Skip to main content

From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example

  • Protocol
  • First Online:
Structural Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2305))

Abstract

In this chapter, we present an overview of a standard protocol to achieve structure determination at high resolution by Single Particle Analysis cryogenic Electron Microscopy using apoferritin as a standard sample. The purified apoferritin is applied to a glow-discharged support and then flash frozen in liquid ethane. The prepared grids are loaded into the electron microscope and checked for particle spreading and ice thickness. The microscope alignments are performed and the data collection session is setup for an overnight data collection. The collected movies containing two-dimensional images of the apoferritin sample are then processed to obtain a high-resolution three-dimensional reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai XC, McMullan G, Scheres SH (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57

    Article  CAS  PubMed  Google Scholar 

  2. Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dubochet J, McDowall AW (1981) Vitrification of pure water for electron microscopy. J Microsc Oxford 124:Rp3–Rp4

    Article  Google Scholar 

  4. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  5. Dubochet J, Adrian M, Chang JJ, Homo JC et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  PubMed  Google Scholar 

  6. Dobro MJ, Melanson LA, Jensen GJ, McDowall AW (2010) Plunge freezing for electron cryomicroscopy. In: Jensen GJ (ed) Methods in enzymology, vol 481. Cryo-EM, Part A—Sample Preparation and Data Collection, pp 63–82

    Google Scholar 

  7. Russo CJ, Passmore LA (2014) Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pantelic RS, Meyer JC, Kaiser U et al (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170:152–156

    Article  CAS  PubMed  Google Scholar 

  9. Russo CJ, Passmore LA (2014) Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11:649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Palovcak E, Wang F, Zheng SQ et al (2018) A simple and robust procedure for preparing graphene-oxide cryo-EM grids. J Struct Biol 2018(204):80–84

    Google Scholar 

  11. Cheung M, Adaniya H, Cassidy C et al (2018) Improved sample dispersion in cryo-EM using “perpetually-hydrated” graphene oxide flakes. J Struct Biol 204:75–79

    Article  CAS  PubMed  Google Scholar 

  12. Naydenova K, Peet MJ, Russo CJ (2019) Multifunctional graphene supports for electron cryomicroscopy. Proc Natl Acad Sci USA 116:11718–11724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelly DF, Abeyrathne PD, Dukovski D, Walz T (2008) The affinity grid: a pre-fabricated EM grid for monolayer purification. J Mol Biol 382:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly DF, Dukovski D, Walz T (2010) A practical guide to the use of monolayer purification and affinity grids. Methods Enzymol 481:83–107

    Article  CAS  PubMed  Google Scholar 

  15. Crucifix C, Uhring M, Schultz P (2004) Immobilization of biotinylated DNA on 2-D streptavidin crystals. J Struct Biol 146:441–451

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Ounjai P, Sigworth FJ (2008) Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection. J Struct Biol 164:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Sigworth FJ (2010) Liposomes on a streptavidin crystal: a system to study membrane proteins by cryo-EM. Methods Enzymol 481:147–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han BG, Walton RW, Song A et al (2012) Electron microscopy of biotinylated protein complexes bound to streptavidin monolayer crystals. J Struct Biol 180:249–253

    Article  CAS  PubMed  Google Scholar 

  19. Han BG, Watson Z, Kang H et al (2016) Long shelf-life streptavidin support-films suitable for electron microscopy of biological macromolecules. J Struct Biol 195:238–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han BG, Watson Z, Cate JHD, Glaeser RM (2017) Monolayer-crystal streptavidin support films provide an internal standard of cryo-EM image quality. J Struct Biol 200:307–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu G, Vago F, Zhang D et al (2014) Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 187:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu G, Li K, Jiang W (2016) Antibody-based affinity cryo-EM grid. Methods 100:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu G, Li K, Huang P et al (2016) Antibody-based affinity cryo-electron microscopy at 2.6 Å resolution. Structure 24:1984–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glaeser RM (2018) Proteins, interfaces, and cryo-EM grids. Curr Opin Colloid Interface Sci 34:1–8

    Article  CAS  PubMed  Google Scholar 

  25. Lu Z, Shaikh TR, Barnard D et al (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168:388–395

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jain T, Sheehan P, Crum J et al (2012) Spotiton: a prototype for an integrated inkjet dispense and vitrification system for cryo-TEM. J Struct Biol 179:68–75

    Article  PubMed  PubMed Central  Google Scholar 

  27. Razinkov I, Dandey V, Wei H et al (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195(2):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnold SA, Albiez S, Bieri A et al (2017) Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J Struct Biol 197:220–226

    Article  CAS  PubMed  Google Scholar 

  29. Dandey VP, Wei H, Zhang Z et al (2018) Spotiton: new features and applications. J Struct Biol 202:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ravelli RBG, Nijpels FJT, Henderikx RJM et al (2019) Automated cryo-EM sample preparation by pin-printing and jet vitrification. BioRxiv:651208. https://doi.org/10.1101/651208

  31. Rubinstein JL, Guo H, Ripstein ZA et al (2109) Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device. Acta Crystallogr D Struct Biol 75:1063–1070

    Article  Google Scholar 

  32. Drulyte I, Johnson RM, Hesketh EL et al (2018) Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr D Struct Biol 74:560–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frederik P, Bomans P, Franssen V, Laeven P (2000) A vitrification robot for time resolved cryo-electron microscopy. In: Cech S, Janisch R (eds) Proceedings of the 12th European Congress on Electron Microscopy, vol I. Reklamní Atelier Kupa, Brno, pp B383–B384

    Google Scholar 

  34. Thompson RF, Iadanza MG, Hesketh EL, Ranson NA (2019) Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nat Protoc 14:100–118

    Article  CAS  PubMed  Google Scholar 

  35. Noble AJ, Dandey VP, Wei H et al (2018) Routine single particle CryoEM sample and grid characterization by tomography. elife 7:e34257

    Article  PubMed  PubMed Central  Google Scholar 

  36. McMullan G, Chen S, Henderson R, Faruqi AR (2009) Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109:1126–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brilot AF, Chen JZ, Cheng A et al (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, Mooney P, Zheng S, Booth CR et al (2013) Electron counting and beam-induced motion correction enables near atomic resolution single particle cryoEM. Nat Methods 10:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng SQ, Palovcak E, Armache JP et al (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campbell MG, Cheng A, Brilot AF et al (2012) Movies of ice-embedded particles enhance resolution in electron cryo microscopy. Structure 20:1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wade RH (1992) A brief look at imaging and contrast transfer. Ultramicroscopy 46:145–156

    Article  CAS  Google Scholar 

  42. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang K (2016) Gctf: real-time CTF determination and correction. J Struct Biol 193:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alewijnse B, Ashton AW, Chambers MG et al (2017) Best practices for managing large CryoEM facilities. J Struct Biol 199:225–236

    Article  PubMed  PubMed Central  Google Scholar 

  45. Biyani N, Righetto RD, McLeod R et al (2017) Focus: the interface between data collection and data processing in cryo-EM. J Struct Biol 198:124–133

    Article  CAS  PubMed  Google Scholar 

  46. Gómez-Blanco J, de la Rosa-Trevín JM, Marabini R et al (2018) Using Scipion for stream image processing at Cryo-EM facilities. J Struct Biol 204:457–463

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sorzano COS, Marabini R, Velazquez-Muriel J et al (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  CAS  PubMed  Google Scholar 

  49. Tang G, Peng L, Baldwin PR, Mann DS et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  50. Scheres SH (2015) Semi-automated selection of cryo-EM particles in RELION-1.3. J Struct Biol 189:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wagner T, Merino F, Stabrin M et al (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. 2, 218 doi: https://doi.org/10.1038/s42003-019-0437-z

  52. Sigworth FJ (1998) A maximum-likelihood approach to single-particle image refinement. J Struct Biol 122:328–339

    Article  CAS  PubMed  Google Scholar 

  53. Sigworth FJ, Doerschuk PC, Carazo JM, Scheres SHW (2010) Chapter ten—an introduction to maximum-likelihood methods in Cryo-EM. Methods Enzymol 482:263–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Punjani A, Rubinstein JL, Fleet D, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296

    Article  CAS  PubMed  Google Scholar 

  56. Zivanov J, Nakane T, Forsberg BO et al (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. elife 7:e42166

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bharat TA, Scheres SH (2016) Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 11:2054–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197:102–113

    Article  PubMed  Google Scholar 

  59. Grant T, Rohou A, Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. elife 7:e35383. 37

    Article  PubMed  PubMed Central  Google Scholar 

  60. Russo CJ, Henderson R (2018) Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 187:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Glaeser RM, Typke D, Tiemeijer PC et al (2011) Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM. J Struct Biol 174:1–10

    Article  PubMed  Google Scholar 

  62. Zivanov J, Nakane T, Scheres SH (2020) Estimation of high-order aberrations and anisotropic magnification from cryo-EM datasets in RELION-3.1. IUCrJ 7:253–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Renault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diebolder, C.A., Dillard, R.S., Renault, L. (2021). From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics