Skip to main content

Solid-State NMR Spectroscopy for Studying Microtubules and Microtubule-Associated Proteins

  • Protocol
  • First Online:
Structural Proteomics

Abstract

In this chapter, we describe the preparatory and spectroscopic procedures for conducting solid-state NMR experiments on microtubules (MTs) obtained from human cells and their complexes with microtubule-associated proteins (MAPs). Next to labeling and functional assembly of MTs and MT-MAP complexes, we discuss solid-state NMR approaches, including fast MAS and hyperpolarization methods that can be used to examine these systems. Such studies can provide novel insight into the dynamic properties of MTs and MT-MAP complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed 49:8346–8357

    Article  CAS  Google Scholar 

  2. Quinn CM, Polenova T (2017) Structural biology of supramolecular assemblies by magic-angle spinning NMR spectroscopy. Q Rev Biophys 50:e1

    Article  Google Scholar 

  3. Boisbouvier J, Kay LE (2018) Advanced isotopic labeling for the NMR investigation of challenging proteins and nucleic acids. J Biomol NMR 71:115–117

    Article  CAS  Google Scholar 

  4. Kaplan M, Narasimhan S, de Heus C et al (2016) EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167:1241–1251

    Article  CAS  Google Scholar 

  5. Narasimhan S, Scherpe S, Paioni A et al (2019) DNP supported solid-state NMR of proteins inside mammalian cells. Angew Chem Int Ed Eng 58:12969–12973

    Article  CAS  Google Scholar 

  6. Theillet F-X, Binolfi A, Bekei B et al (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50

    Article  CAS  Google Scholar 

  7. Kumar A, Blommers MJ, Krastel P et al (2010) Interaction of Epothilone B (Patupilone) with microtubules as detected by two-dimensional solid-state NMR spectroscopy. Angew Chem Int Ed Eng 49:7504–7507

    Article  CAS  Google Scholar 

  8. Yan S, Guo C, Hou G et al (2015) Atomic-resolution structure of the CAP-Gly domain of dynactin on polymeric microtubules determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 112:14611–14616

    Article  CAS  Google Scholar 

  9. Atherton J, Jiang K, Stangier MM et al (2017) A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 24:931–943

    Article  CAS  Google Scholar 

  10. Kubo S, Nishida N, Udagawa Y et al (2013) A gel-encapsulated bioreactor system for NMR studies of protein–protein interactions in living mammalian cells. Angew Chem Int Ed Eng 52:1208–1211

    Article  CAS  Google Scholar 

  11. Kesten C, Wallmann A, Schneider R et al (2019) The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nat Commun 10:857

    Article  Google Scholar 

  12. Kadavath H, Fontela YC, Jaremko M et al (2018) The binding mode of a tau peptide with tubulin. Angew Chem Int Ed Eng 57:3246–3250

    Article  CAS  Google Scholar 

  13. Atherton J, Luo Y, Xiang S et al (2019) Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nat Commun 10:5236

    Article  Google Scholar 

  14. Luo Y, Xaing S, Hooikaas PJ et al (2020) Direct observation of dynamic protein interactions involving human microtubules using solid-state NMR spectroscopy. Nat Commun 11:18

    Article  CAS  Google Scholar 

  15. Damman R, Schutz S, Luo Y et al (2019) Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nat Commun 10:4536

    Article  Google Scholar 

  16. Souphron, J, Bodakuntla, S, Jijumon, AS et al (2019) Purification of tubulin with controlled post-translational modifications by polymerization–depolymerization cycles Nature Protocols, 14, 1634–1660

    Google Scholar 

  17. Fung B, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  CAS  Google Scholar 

  18. Bennett AE, Rienstra CM, Griffiths J (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    Article  CAS  Google Scholar 

  19. Sauvée C, Rosay M, Casano G et al (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed Eng 52:10858–10861

    Article  Google Scholar 

  20. Gradmann S, Ader C, Heinrich I et al (2012) Rapid prediction of multi-dimensional NMR data sets. J Biomol NMR 54:377–387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gert Folkers for helpful discussions and Johan van der Zwan for excellent technical support. This work was supported by the Dutch Science Foundation NWO (VENI grant 722.016.002 to SX, NWO-Groot grant 175.010.2009.002, and TOP-PUNT grant to MB) and by uNMR-NL, the National Roadmap Large-Scale NMR Facility of the Netherlands (grant 184.032.207). C.J. is supported by the grants ANR-10-IDEX-0001-02 PSL, ANR-11-LBX-0038, FRM DEQ20170336756. S.B. was supported by the FRM grant FDT201805005465, and CEFIPRA 5703-1, and J.A.S. by the European Union’s Horizon 2020 Marie Skłodowska-Curie grant agreement No. 675737, and the FRM grant FDT201904008210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Baldus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luo, Y. et al. (2021). Solid-State NMR Spectroscopy for Studying Microtubules and Microtubule-Associated Proteins. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1406-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1405-1

  • Online ISBN: 978-1-0716-1406-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics