Skip to main content

Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection

  • Protocol
  • First Online:
Small Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2300))

  • 1268 Accesses

Abstract

The assessment of non-coding RNAs (ncRNAs) functions highly relies on loss of function studies. However, due to their exclusive or partial nuclear localization, many small and long ncRNAs are not efficiently silenced by RNA interference. Antisense LNA GapmeRs constitute a good alternative to RNAi. They allow an effective knockdown of ncRNAs with sizes greater than 80 nucleotides, regardless of their cellular localization. This chapter focuses on the silencing of two different nuclear ncRNAs (ANRIL and SATIII RNAs) in mammalian cells using antisense LNA GapmeRs with two different transfection methods: calcium phosphate-mediated transfection and LipofectamineTM 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang XH, Vickers TA, Guo S, Crooke ST (2011) Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 39(3):e13

    Article  Google Scholar 

  2. Ploner A, Ploner C, Lukasser M, Niederegger H, Huttenhofer A (2009) Methodological obstacles in knocking down small noncoding RNAs. RNA 15:1797–1804

    Article  CAS  Google Scholar 

  3. Singh SK, Koshkin AA, Wengel J, Nielsen P (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 1998:455–456

    Article  Google Scholar 

  4. Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  Google Scholar 

  5. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  CAS  Google Scholar 

  6. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci 84:7413–7417

    Article  CAS  Google Scholar 

  7. Jepsen JS, Sorensen MD, Wengel J (2004) Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14:130–146

    Article  CAS  Google Scholar 

  8. Biamonti G, Vourc’h C (2010) Nuclear stress bodies. Cold Spring Harbor Perspectives in Biology

    Google Scholar 

  9. Rosic S, Köhler F, Erhardt S (2014) Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J Cell Biol 207:335–349

    Article  CAS  Google Scholar 

  10. Ninomiya K, Adachi S, Natsume T, Iwakiri J, Terai G, Asai K, Hirose T (2019) LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J 29:e102729. https://doi.org/10.15252/embj.2019102729

    Article  CAS  Google Scholar 

  11. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene. Oncogene 30:1956–1962

    Article  CAS  Google Scholar 

  12. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by Polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the french PIA project “Lorraine Université d’Excellence” (ANR-15IDEX-04-LUE) and the RHU program FIGHT-HF (ANR-15-RHU-004). The CNRS and UL are also thanked for fundings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Aigueperse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alfeghaly, C., Aigueperse, C., Maenner, S., Behm-Ansmant, I. (2021). Non-Coding RNA Silencing in Mammalian Cells by Antisense LNA GapmeRs Transfection. In: Rederstorff, M. (eds) Small Non-Coding RNAs. Methods in Molecular Biology, vol 2300. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1386-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1386-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1385-6

  • Online ISBN: 978-1-0716-1386-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics