Skip to main content

Patch-Clamp Recording of the Activity of Ion Channels in the Inner Mitochondrial Membrane

  • Protocol
  • First Online:
Mitochondrial Medicine

Abstract

Mitochondria are intracellular organelles, which play a crucial role in the generation of ATP. Mitochondria are surrounded by a double membrane, consisting of a smooth outer membrane (OMM) and a markedly folded inner mitochondrial membrane (IMM). Mitochondrion that has been stripped of its outer membrane, leaving the inner membrane intact is called mitoplast. There is a number of different transport proteins located in the inner mitochondrial membrane including ion channels that mediate fluxes of potassium, calcium, and chloride ions. These channels regulate the mitochondrial membrane potential, respiration, and production of reactive oxygen species. The stability of mitoplasts offers the possibility of measuring the activity of ion channels from IMM using the patch-clamp technique. Electrophysiological measurements of currents through ion channels in the IMM permit discovery of unique properties of these channels with the aim of new specific pharmacological therapies. In this chapter, we describe the isolation of mitochondria, preparation of mitoplast for patch-clamp recordings and single-mitoplast PCR experiments, which can be helpful in mastering the technique of recording the activity of mitochondrial ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodman MB, Lindsay TH, Lockery SR, Richmond JE (2012) Electrophysiological methods for Caenorhabditis elegans neurobiology. Methods Cell Biol 107:409–436. https://doi.org/10.1016/B978-0-12-394620-1.00014-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448. https://doi.org/10.1113/jphysiol.1952.sp004716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802. https://doi.org/10.1038/260799a0

    Article  CAS  PubMed  Google Scholar 

  4. Conforti L (2012) Chapter 20 - patch-clamp techniques. In: Sperelakis N (ed) Cell physiology source book, 4th edn. Academic Press, San Diego, pp 369–381

    Chapter  Google Scholar 

  5. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100. https://doi.org/10.1007/bf00656997

    Article  CAS  PubMed  Google Scholar 

  6. Pallotta BS, Magleby KL, Barrett JN (1981) Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293(5832):471–474. https://doi.org/10.1038/293471a0

    Article  CAS  PubMed  Google Scholar 

  7. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257(2):549–554. https://doi.org/10.1006/bbrc.1999.0496

    Article  CAS  PubMed  Google Scholar 

  8. Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A (2013) Large-conductance Ca(2+)-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 304(11):H1415–H1427. https://doi.org/10.1152/ajpheart.00976.2012

    Article  CAS  PubMed  Google Scholar 

  9. Chen CC, Cang C, Fenske S, Butz E, Chao YK, Biel M, Ren D, Wahl-Schott C, Grimm C (2017) Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes. Nat Protoc 12(8):1639–1658. https://doi.org/10.1038/nprot.2017.036

    Article  CAS  PubMed  Google Scholar 

  10. Cao Q, Zhong XZ, Zou Y, Zhang Z, Toro L, Dong XP (2015) BK channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release. Dev Cell 33(4):427–441. https://doi.org/10.1016/j.devcel.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Li B, Jie W, Huang L, Wei P, Li S, Luo Z, Friedman AK, Meredith AL, Han MH, Zhu XH, Gao TM (2014) Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nat Neurosci 17(8):1055–1063. https://doi.org/10.1038/nn.3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP, Gawaz M, Krieg T, Szewczyk A, Nikolaev VO, Ruth P, Lukowski R (2017) cGMP-elevating compounds and ischemic conditioning provide Cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation 136(24):2337–2355. https://doi.org/10.1161/CIRCULATIONAHA.117.028723

    Article  CAS  PubMed  Google Scholar 

  13. Bednarczyk P, Wieckowski MR, Broszkiewicz M, Skowronek K, Siemen D, Szewczyk A (2013) Putative structural and functional coupling of the mitochondrial BKCa Channel to the respiratory chain. PLoS One 8(6):e68125. https://doi.org/10.1371/journal.pone.0068125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bednarczyk P, Kicinska A, Laskowski M, Kulawiak B, Kampa R, Walewska A, Krajewska M, Jarmuszkiewicz W, Szewczyk A (2018) Evidence for a mitochondrial ATP-regulated potassium channel in human dermal fibroblasts. Biochim Biophys Acta Bioenerg 1859(5):309–318. https://doi.org/10.1016/j.bbabio.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  15. Toczylowska-Maminska R, Olszewska A, Laskowski M, Bednarczyk P, Skowronek K, Szewczyk A (2014) Potassium channel in the mitochondria of human keratinocytes. J Invest Dermatol 134(3):764–772. https://doi.org/10.1038/jid.2013.422

    Article  CAS  PubMed  Google Scholar 

  16. Gururaja Rao S, Bednarczyk P, Towheed A, Shah K, Karekar P, Ponnalagu D, Jensen HN, Addya S, Reyes BAS, Van Bockstaele EJ, Szewczyk A, Wallace DC, Singh H (2019) BKCa (Slo) channel regulates mitochondrial function and lifespan in Drosophila melanogaster. Cell 8(9):945. https://doi.org/10.3390/cells8090945

    Article  CAS  Google Scholar 

  17. Balderas E, Zhang J, Stefani E, Toro L (2015) Mitochondrial BKCa channel. Front Physiol 6:104. https://doi.org/10.3389/fphys.2015.00104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laskowski M, Augustynek B, Bednarczyk P, Zochowska M, Kalisz J, O'Rourke B, Szewczyk A, Kulawiak B (2019) Single-channel properties of the ROMK-pore-forming subunit of the mitochondrial ATP-sensitive potassium channel. Int J Mol Sci 20(21):5323. https://doi.org/10.3390/ijms20215323

    Article  CAS  PubMed Central  Google Scholar 

  19. Szabó I, Zoratti M (1992) The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 24(1):111–117. https://doi.org/10.1007/bf00769537

    Article  PubMed  Google Scholar 

  20. Urbani A, Giorgio V, Carrer A et al (2019) Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun 10(1):4341. https://doi.org/10.1038/s41467-019-12331-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toczyłowska-Mamińska R, Olszewska A, Laskowski M, Bednarczyk P, Skowronek K, Szewczyk A (2014) Potassium channel in the mitochondria of human keratinocytes. J Invest Dermatol 134(3):764–772. https://doi.org/10.1038/jid.2013.422

    Article  CAS  PubMed  Google Scholar 

  22. Szabo I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280(13):12790–12798. https://doi.org/10.1074/jbc.M413548200

    Article  CAS  PubMed  Google Scholar 

  23. Bednarczyk P, Kowalczyk JE, Beresewicz E, Dolowy K, Szewczyk A, Zablocka B (2010) Identification of a voltage-gated potassium channel in gerbil hippocampal mitochondria. Biochem Biophys Res Comm 397(3):614–620. https://doi.org/10.1016/j.bbrc.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  24. De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabo I, Zoratti M (2009) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45(5):509–516. https://doi.org/10.1016/j.ceca.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  25. Walewska A, Kulawiak B, Szewczyk A, Koprowski P (2018) Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochim Biophys Acta Bioenerg 1859(9):797–805. https://doi.org/10.1016/j.bbabio.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  26. Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94(2):519–608. https://doi.org/10.1152/physrev.00021.2013

    Article  CAS  PubMed  Google Scholar 

  27. Testai L, Rapposelli S, Martelli A, Breschi MC, Calderone V (2015) Mitochondrial potassium channels as pharmacological target for cardioprotective drugs. Med Res Rev 35(3):520–553. https://doi.org/10.1002/med.21332

    Article  CAS  PubMed  Google Scholar 

  28. Kampa RP, Kicinska A, Jarmuszkiewicz W, Pasikowska-Piwko M, Dolegowska B, Debowska R, Szewczyk A, Bednarczyk P (2019) Naringenin as an opener of mitochondrial potassium channels in dermal fibroblasts. Exp Dermatol 28(5):543–550. https://doi.org/10.1111/exd.13903

    Article  CAS  PubMed  Google Scholar 

  29. De Marchi U, Checchetto V, Zanetti M et al (2010) ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp. Cell Physiol Biochem 26(6):975–982. https://doi.org/10.1159/000324010

    Article  CAS  PubMed  Google Scholar 

  30. Dolga AM, Netter MF, Perocchi F et al (2013) Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction. J Biol Chem 288(15):10792–10804. https://doi.org/10.1074/jbc.M113.453522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kicinska A, Augustynek B, Kulawiak B, Jarmuszkiewicz W, Szewczyk A, Bednarczyk P (2016) A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochem J 473(23):4457–4471. https://doi.org/10.1042/BCJ20160732

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Science Center: 2016/21/B/NZ1/02769 to P.B., 2020/36/T/NZ1/00116 to R.P.K., 2018/31/N/NZ1/00928 to A.W., and 2015/19/B/NZ1/02794 to P.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Koprowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bednarczyk, P., Kampa, R.P., Gałecka, S., Sęk, A., Walewska, A., Koprowski, P. (2021). Patch-Clamp Recording of the Activity of Ion Channels in the Inner Mitochondrial Membrane. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics