Skip to main content

Evaluation of Mitochondria Content and Function in Live Cells by Multicolor Flow Cytometric Analysis

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2276))

Abstract

To evaluate how a cell responds to the external stimuli, treatment, or alteration of the microenvironment, the quantity and quality of mitochondria are commonly used as readouts. However, it is challenging to apply mitochondrial analysis to the samples that are composed of mixed cell populations originating from tissues or when multiple cell populations are of interest, using methods such as Western blot, electron microscopy, or extracellular flux analysis.

Flow cytometry is a technique allowing the detection of individual cell status and its identity simultaneously when used in combination with surface markers. Here we describe how to combine mitochondria-specific dyes or the dyes targeting the superoxide produced by mitochondria with surface marker staining to measure the mitochondrial content and activity in live cells by flow cytometry. This method can be applied to all types of cells in suspension and is particularly useful for analysis of samples composed of heterogeneous cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27(1):4–25. https://doi.org/10.1111/sms.12702

    Article  CAS  PubMed  Google Scholar 

  3. Mumcuoglu EU, Hassanpour R, Tasel SF, Perkins G, Martone ME, Gurcan MN (2012) Computerized detection and segmentation of mitochondria on electron microscope images. J Microsc 246(3):248–265. https://doi.org/10.1111/j.1365-2818.2012.03614.x

    Article  CAS  PubMed  Google Scholar 

  4. Pelletier M, Billingham LK, Ramaswamy M, Siegel RM (2014) Chapter Seven—Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption. Methods Enzymol 542:125–149. https://doi.org/10.1016/B978-0-12-416618-9.00007-8

    Article  CAS  PubMed  Google Scholar 

  5. Plitzko B, Loesgen S (2018) Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in culture cells for assessment of the energy metabolism. Bio-protocol 8(10):e2850. https://doi.org/10.21769/BioProtoc.2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108(25):10190–10195. https://doi.org/10.1073/pnas.1107402108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Chapter Sixteen - Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354. https://doi.org/10.1016/B978-0-12-801415-8.00016-3

    Article  CAS  PubMed  Google Scholar 

  8. Van Blerkom J (2011) Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11(5):797–813. https://doi.org/10.1016/j.mito.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  9. Tait SWG, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5(9):a008706. https://doi.org/10.1101/cshperspect.a008706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agnello M, Morici G, Rinaldi AM (2008) A method for measuring mitochondrial mass and activity. Cytotechnology 56(3):145–149. https://doi.org/10.1007/s10616-008-9143-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poot M, Zhang YZ, Krämer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44(12):1363–1372. https://doi.org/10.1177/44.12.8985128

    Article  CAS  PubMed  Google Scholar 

  12. Chen LB (1988) Fluorescent Labeling of Mitochondria. Methods Cell Biol 29:103–123. https://doi.org/10.1016/S0091-679X(08)60190-9

    Article  Google Scholar 

  13. Heiskanen KM, Bhat MB, Wang H-W, Ma J, Nieminen A-L (1999) Mitochondrial depolarization accompanies cytochrome C release during apoptosis in PC6 cells. J Biol Chem 274(9):5654–5658. https://doi.org/10.1074/jbc.274.9.5654

    Article  CAS  PubMed  Google Scholar 

  14. Wiederschain GY (2011) The molecular probes handbook. A guide to fluorescent probes and labeling technologies. Biochem Mosc 76(11):1276–1276. https://doi.org/10.1134/S0006297911110101

    Article  CAS  Google Scholar 

  15. Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C-H, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. https://doi.org/10.1038/nature13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Song M, Zhang B, Zhang Y (2016) Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxidative Med Cell Longev 2016:10. https://doi.org/10.1155/2016/1580967

    Article  CAS  Google Scholar 

  17. Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119. https://doi.org/10.1038/s41419-017-0135-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LAJ (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496(7444):238–242. https://doi.org/10.1038/nature11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Dai M, Yuan Z (2018) Methods for the detection of reactive oxygen species. Anal Methods 10(38):4625–4638. https://doi.org/10.1039/C8AY01339J

    Article  CAS  Google Scholar 

  20. Zhou R, Yazdi AS, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  21. Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R (2008) Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci Off J Soc Neurosci 28(16):4115–4122. https://doi.org/10.1523/JNEUROSCI.5308-07.2008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Chin-Wen Wei for the initial set up for this experimental system and Yu-Ting Hsieh for critically reading the manuscript. This work was supported by grants from Ministry of Science and Technology, Taiwan (MOST 107-2320-B-010-020, MOST 108-2628-B-010-005 to C.-L. H.; 107-2320-B-010 -016 -MY3, 106-2320-B-010 -026 -MY3 to I. L. D.) and Cancer Progression Research Center, National Yang-Ming University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Lin Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, HH., Tsai, TL., Dzhagalov, I.L., Hsu, CL. (2021). Evaluation of Mitochondria Content and Function in Live Cells by Multicolor Flow Cytometric Analysis. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics