Skip to main content

Investigation of Mitochondrial ADP-Ribosylation Via Immunofluorescence

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2276))

Abstract

ADP-ribosylation is a posttranslational protein modification, involved in various cellular processes, ranging from DNA-damage repair to apoptosis. While its function has been studied amply with respect to genotoxic stress-associated nuclear ADP-ribosylation, the functional relevance of mitochondrial ADP-ribosylation remains so far poorly studied. This is mainly attributed to the absence of powerful techniques able to detect the modification. However, the usage of recently developed anti-ADP-ribose–specific antibodies allows now to investigate mitochondrial ADP-ribosylation under physiological and pathophysiological conditions. In the below method, we describe in detail how to efficiently detect and quantify mitochondrial ADP-ribosylation via immunofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754

    Article  CAS  Google Scholar 

  2. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22(2):204–206

    Article  CAS  Google Scholar 

  3. Quirós PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17(4):213–226

    Article  Google Scholar 

  4. Yang W, Nagasawa K, Münch C et al (2016) Mitochondrial Sirtuin network reveals dynamic SIRT3-dependent Deacetylation in response to membrane depolarization. Cell 167(4):985–1000

    Article  CAS  Google Scholar 

  5. Kruse R, Højlund K (2017) Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 33:45–57

    Article  CAS  Google Scholar 

  6. Tan EP, McGreal SR, Graw S et al (2017) Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. J Biol Chem 292(36):14940–14962

    Article  CAS  Google Scholar 

  7. Hopp A-K, Teloni F, Gondrand C, et al Mitochondrial ADP-ribosylation controls nuclear ARTD1-induced PARylation and PARP inhibitor efficiency, accepted in Mol Cell

    Google Scholar 

  8. Hottiger MO (2015) Nuclear ADP-Ribosylation and its role in chromatin plasticity, cell differentiation, and epigenetics. Annu Rev Biochem 84:227–263

    Article  CAS  Google Scholar 

  9. Hottiger MO (2015) SnapShot: ADP-ribosylation signaling. Mol Cell 58(6):1134–1134

    Article  CAS  Google Scholar 

  10. Lüscher B, Bütepage M, Eckei L et al (2018) ADP-Ribosylation, a multifaceted posttranslational modification involved in the control of cell physiology in health and disease. Chem Rev 118(3):1092–1136

    Article  Google Scholar 

  11. Haigis MC, Mostoslavsky R, Haigis KM et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126(5):941–945

    Article  CAS  Google Scholar 

  12. Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280(22):21313–21320

    Article  CAS  Google Scholar 

  13. Kun E, Zimber PH, Chang AC et al (1975) Macromolecular enzymatic product of NAD+ in liver mitochondria. Proc Natl Acad Sci 72(4):1436–1440

    Article  CAS  Google Scholar 

  14. Leutert M, Menzel S, Braren R et al (2018) Proteomic characterization of the heart and skeletal muscle reveals widespread arginine ADP-Ribosylation by the ARTC1 Ectoenzyme. Cell Rep 24(7):1916–1929

    Article  CAS  Google Scholar 

  15. Valm AM, Cohen S, Legant WR et al (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546(7656):162–167

    Article  CAS  Google Scholar 

  16. Hopp A-K, GrĂĽter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD+ and ADP-Ribosylation. Cells 8(8):890

    Google Scholar 

  17. Agnew T, Munnur D, Crawford K et al (2018) MacroD1 is a promiscuous ADP-ribosyl hydrolase localized to mitochondria. Front Microbiol 9:20

    Article  Google Scholar 

  18. Neuvonen M, Ahola T (2009) Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385(1):212–225

    Article  CAS  Google Scholar 

  19. Voorneveld J, Rack JGM, Ahel I et al (2018) Synthetic α- and β-Ser-ADP-ribosylated peptides reveal α-Ser-ADPr as the native epimer. Org Lett 20(13):4140–4143

    Article  CAS  Google Scholar 

  20. Xu Y, Zhou P, Cheng S et al (2019) A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell 178(3):552–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tobias Suter (University of Zurich) for providing editorial assistance and critical input during manuscript writing. Work on ADP-ribosylation in the laboratory of M.O.H is supported by the Kanton of Zurich and the Swiss National Science Foundation (SNF 31003A_176177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Hottiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hopp, AK., Hottiger, M.O. (2021). Investigation of Mitochondrial ADP-Ribosylation Via Immunofluorescence. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2276. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1266-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1266-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1265-1

  • Online ISBN: 978-1-0716-1266-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics