Skip to main content

Quantitative Determination of Intracellular Bond Cleavage

  • Protocol
  • First Online:
Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery

Abstract

Cleavable crosslinkers that respond to specific intracellular cues (pH, reducing environments, enzymes, etc.) are a critical component of drug delivery systems, which drives the subcellular localization and processing of therapeutic cargo. With numerous stimuli-responsive drug delivery systems in development, a quantitative measurement of their intracellular processing is of paramount importance. In this chapter, we discuss methods for determining the intracellular rate of bond cleavage and highlight a recent framework developed in our group for quantifying the rate of intracellular bond degradation in the endocytic pathway. This quantitative method involves the use of fluorescent FRET probes built on an oligothioetheramide (oligoTEA) trifunctional linker scaffold, that when attached to antibodies can report compartment specific cleavage events. This method involves the synthesis and site-specific bioconjugation of a reduction-sensitive FRET-based crosslinker to a variety of targeting ligands. We demonstrate this concept with trastuzumab, a humanized monoclonal antibody against the HER2 receptor. Furthermore, this chapter details a kinetic model based on mass-action kinetics to describe the intracellular processing of this conjugate. The kinetic model, developed in conjunction with live-cell experiments, can be used to extract the rate constant for intracellular bond degradation. We present an example of a trastuzumab FRET-probe conjugate bearing a reduction-sensitive disulfide bond. The framework outlined in this chapter is applicable to the quantification of drug delivery systems that employ alternative endocytosis pathways, bond types, and cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin K, Tibbitts J (2012) Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29:2354–2366. https://doi.org/10.1007/s11095-012-0800-y

    Article  CAS  PubMed  Google Scholar 

  2. Ernsting MJ, Murakami M, Roy A, Li S-D (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172:782–794. https://doi.org/10.1016/j.jconrel.2013.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673. https://doi.org/10.1083/jcb.200302028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaksonen M, Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19:313–326. https://doi.org/10.1038/nrm.2017.132

    Article  CAS  PubMed  Google Scholar 

  5. Gordon S (2016) Phagocytosis: an Immunobiologic process. Immunity 44:463–475. https://doi.org/10.1016/j.immuni.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  6. Kerr MC, Teasdale RD (2009) Defining macropinocytosis. Traffic 10:364–371. https://doi.org/10.1111/j.1600-0854.2009.00878.x

    Article  CAS  PubMed  Google Scholar 

  7. Elkin SR, Lakoduk AM, Schmid SL (2016) Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr 166:196–204. https://doi.org/10.1007/s10354-016-0432-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bargh JD, Isidro-Llobet A, Parker JS, Spring DR (2019) Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 48:4361–4374. https://doi.org/10.1039/c8cs00676h

    Article  CAS  PubMed  Google Scholar 

  9. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  CAS  PubMed  Google Scholar 

  10. Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537. https://doi.org/10.1016/j.cbpa.2010.06.170

    Article  CAS  PubMed  Google Scholar 

  11. Rosenblum D, Joshi N, Tao W et al (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410. https://doi.org/10.1038/s41467-018-03705-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bader RA, Silvers AL, Zhang N (2011) Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromolecules 12:314–320. https://doi.org/10.1021/bm1008603

    Article  CAS  PubMed  Google Scholar 

  13. Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29:4350. https://doi.org/10.1021/la304836e

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Wu J, Xu L et al (2017) Albumin nanoparticle encapsulation of potent cytotoxic therapeutics shows sustained drug release and alleviates cancer drug toxicity. Chem Commun (Camb) 53:2618–2621. https://doi.org/10.1039/c6cc08978j

    Article  CAS  Google Scholar 

  15. Ducry L, Stump B (2009) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21:5–13. https://doi.org/10.1021/bc9002019

    Article  CAS  Google Scholar 

  16. Yu M, Wu J, Shi J, Farokhzad OC (2015) Nanotechnology for protein delivery: overview and perspectives. J Control Release 240:24–37. https://doi.org/10.1016/j.jconrel.2015.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen H, Sun T, Ferrari M (2012) Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther 19:367–373. https://doi.org/10.1038/cgt.2012.22

    Article  CAS  PubMed  Google Scholar 

  18. Akinc A, Goldberg M, Qin J et al (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879. https://doi.org/10.1038/mt.2009.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jayaraman M, Ansell SM, Mui BL et al (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51:8529–8533. https://doi.org/10.1002/anie.201203263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen AE, Petersen AL, Henriksen JR et al (2015) Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using Copper-64 liposomes. ACS Nano 9:6985–6995. https://doi.org/10.1021/acsnano.5b01324

    Article  CAS  PubMed  Google Scholar 

  21. Schmid D, Park CG, Hartl CA et al (2017) T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun 8:1747. https://doi.org/10.1038/s41467-017-01830-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schiffelers RM, Ansari A, Xu J et al (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149. https://doi.org/10.1093/nar/gnh140

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sago CD, Lokugamage MP, Islam FZ et al (2018) Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J Am Chem Soc 140:17095–17105. https://doi.org/10.1021/jacs.8b08976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sago CD, Lokugamage MP, Paunovska K et al (2018) High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc Natl Acad Sci U S A 115:E9944–E9952. https://doi.org/10.1073/pnas.1811276115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Chan JM, Gu FX et al (2009) Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–1702. https://doi.org/10.1021/nn800275r

    Article  CAS  Google Scholar 

  26. Alabi CA, Love KT, Sahay G et al (2013) Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc Natl Acad Sci U S A 110:12881–12886. https://doi.org/10.1073/pnas.1306529110

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Z, Barnes JC, Bosoy A et al (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605. https://doi.org/10.1039/c1cs15246g

    Article  CAS  PubMed  Google Scholar 

  28. Azharuddin M, Zhu GH, Das D et al (2019) A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 55:6964–6996. https://doi.org/10.1039/c9cc01741k

    Article  CAS  Google Scholar 

  29. Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41:2539–2544. https://doi.org/10.1039/c2cs15294k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rozema DB, Lewis DL, Wakefield DH et al (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U S A 104:12982–12987. https://doi.org/10.1073/pnas.0703778104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Larson N, Ghandehari H (2012) Polymeric conjugates for drug delivery. Chem Mater 24:840. https://doi.org/10.1021/cm2031569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beck A, Goetsch L, Dumontet C, Corvaïa N (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16:315–337. https://doi.org/10.1038/nrd.2016.268

    Article  CAS  PubMed  Google Scholar 

  33. Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody-drug conjugates. Nat Chem 8:114–119. https://doi.org/10.1038/nchem.2415

    Article  CAS  PubMed  Google Scholar 

  34. Tai W, Shukla RS, Li B, Cheng K (2011) Development of a peptide-drug conjugate for prostate cancer therapy. Mol Pharm 8:901–912. https://doi.org/10.1021/mp200007b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gray BP, Kelly L, Ahrens DP et al (2018) Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer. Proc Natl Acad Sci U S A 115:4761–4766. https://doi.org/10.1073/pnas.1717705115

    Article  CAS  Google Scholar 

  36. Geng Q, Sun X, Gong T, Zhang Z-R (2012) Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery. Bioconjug Chem 23:1200–1210. https://doi.org/10.1021/bc300020f

    Article  CAS  PubMed  Google Scholar 

  37. Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2:721–730. https://doi.org/10.1038/35096054

    Article  CAS  PubMed  Google Scholar 

  38. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424. https://doi.org/10.1016/s0962-8924(00)89101-1

    Article  CAS  PubMed  Google Scholar 

  39. Riezman H, Woodman PG, van Meer G, Marsh M (1997) Molecular mechanisms of endocytosis. Cell 91:731–738. https://doi.org/10.1016/s0092-8674(00)80461-4

    Article  CAS  PubMed  Google Scholar 

  40. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902. https://doi.org/10.1146/annurev.biochem.78.081307.110540

    Article  CAS  PubMed  Google Scholar 

  41. van Vliet C, Thomas EC, Merino-Trigo A et al (2003) Intracellular sorting and transport of proteins. Prog Biophys Mol Biol 83:1. https://doi.org/10.1016/s0079-6107(03)00019-1

    Article  PubMed  Google Scholar 

  42. Duncan R, Richardson SCW (2012) Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 9:2380–2402. https://doi.org/10.1021/mp300293n

    Article  CAS  PubMed  Google Scholar 

  43. Arteaga CL, Sliwkowski MX, Osborne CK et al (2011) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9:16–32. https://doi.org/10.1038/nrclinonc.2011.177

    Article  CAS  PubMed  Google Scholar 

  44. Mitri Z, Constantine T, O'Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193. https://doi.org/10.1155/2012/743193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bertelsen V, Stang E (2014) The mysterious ways of ErbB2/HER2 trafficking. Membranes 4:424–446. https://doi.org/10.3390/membranes4030424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nahta R, Esteva FJ (2007) Trastuzumab: triumphs and tribulations. Oncogene 26:3637–3643. https://doi.org/10.1038/sj.onc.1210379

    Article  CAS  PubMed  Google Scholar 

  47. Cho H-S, Mason K, Ramyar KX et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin fab. Nature 421:756–760. https://doi.org/10.1038/nature01392

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh R, Narasanna A, Wang SE et al (2011) Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res 71:1871–1882. https://doi.org/10.1158/0008-5472.CAN-10-1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barok M, Isola J, Palyi-Krekk Z et al (2007) Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 6:2065. https://doi.org/10.1158/1535-7163.mct-06-0766

    Article  CAS  PubMed  Google Scholar 

  50. Klos KS, Zhou X, Lee S et al (2003) Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer 98:1377–1385. https://doi.org/10.1002/cncr.11656

    Article  CAS  PubMed  Google Scholar 

  51. Wen X-F, Yang G, Mao W et al (2006) HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 25:6986–6996. https://doi.org/10.1038/sj.onc.1209685

    Article  CAS  PubMed  Google Scholar 

  52. Peddi PF, Hurvitz SA (2013) Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future Oncol 9:319–326. https://doi.org/10.2217/fon.13.7

    Article  CAS  PubMed  Google Scholar 

  53. Agus DB, Akita RW, Fox WD et al (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137

    Article  CAS  Google Scholar 

  54. Franklin MC, Carey KD, Vajdos FF et al (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328

    Article  CAS  Google Scholar 

  55. Swain SM, Baselga J, Kim S-B et al (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372:724–734. https://doi.org/10.1056/NEJMoa1413513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palanca-Wessels MC, Booth GC, Convertine AJ et al (2016) Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget 7:9561–9575. https://doi.org/10.18632/oncotarget.7076

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740. https://doi.org/10.1158/0008-5472.CAN-05-4199

    Article  CAS  PubMed  Google Scholar 

  58. Anhorn MG, Wagner S, Kreuter J et al (2008) Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug Chem 19:2321–2331. https://doi.org/10.1021/bc8002452

    Article  CAS  PubMed  Google Scholar 

  59. Maass KF, Kulkarni C, Betts AM, Wittrup KD (2016) Determination of cellular processing rates for a Trastuzumab-Maytansinoid antibody-drug conjugate (ADC) highlights key parameters for ADC design. AAPS J 18:635–646. https://doi.org/10.1208/s12248-016-9892-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carter P, Presta L, Gorman CM et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285–4289. https://doi.org/10.1073/pnas.89.10.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rudnick SI, Lou J, Shaller CC et al (2011) Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Cancer Res 71:2250–2259. https://doi.org/10.1158/0008-5472.CAN-10-2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Adams CW, Allison DE, Flagella K et al (2005) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55:717–727. https://doi.org/10.1007/s00262-005-0058-x

    Article  CAS  PubMed  Google Scholar 

  63. Zahnd C, Pecorari F, Straumann N et al (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J Biol Chem 281:35167–35175. https://doi.org/10.1074/jbc.M602547200

    Article  CAS  PubMed  Google Scholar 

  64. Orlova A, Magnusson M, Eriksson TLJ et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348. https://doi.org/10.1158/0008-5472.CAN-05-3521

    Article  CAS  PubMed  Google Scholar 

  65. Diderich P, Heinis C (2014) Phage selection of bicyclic peptides binding Her2. Tetrahedron 70:7733. https://doi.org/10.1016/j.tet.2014.05.106

    Article  CAS  Google Scholar 

  66. DeFazio-Eli L, Strommen K, Dao-Pick T et al (2011) Quantitative assays for the measurement of HER1-HER2 heterodimerization and phosphorylation in cell lines and breast tumors: applications for diagnostics and targeted drug mechanism of action. Breast Cancer Res 13:R44. https://doi.org/10.1186/bcr2866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lewis GD, Figari I, Fendly B et al (1993) Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 37:255–263. https://doi.org/10.1007/bf01518520

    Article  CAS  PubMed  Google Scholar 

  68. Austin CD, De Mazière AM, Pisacane PI et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15:5268–5282. https://doi.org/10.1091/mbc.e04-07-0591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sorkin MR, Walker JA, Kabaria SR et al (2019) Responsive antibody conjugates enable quantitative determination of intracellular bond degradation rate. Cell Chem Biol 26:1643–1651.e4. https://doi.org/10.1016/j.chembiol.2019.09.008

    Article  CAS  PubMed  Google Scholar 

  70. Hendriks BS, Klinz SG, Reynolds JG et al (2013) Impact of tumor HER2/ERBB2 expression level on HER2-targeted liposomal doxorubicin-mediated drug delivery: multiple low-affinity interactions lead to a threshold effect. Mol Cancer Ther 12:1816–1828. https://doi.org/10.1158/1535-7163.MCT-13-0180

    Article  CAS  PubMed  Google Scholar 

  71. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res 63:1130–1137

    CAS  PubMed  Google Scholar 

  72. Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7:1913–1920. https://doi.org/10.1021/mp100253e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Binauld S, Stenzel MH (2013) Acid-degradable polymers for drug delivery: a decade of innovation. Org Biomol Chem 49:2082–2102. https://doi.org/10.1039/c2cc36589h

    Article  CAS  Google Scholar 

  74. Bardia A, Mayer IA, Vahdat LT et al (2019) Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 380:741–751. https://doi.org/10.1056/NEJMoa1814213

    Article  CAS  PubMed  Google Scholar 

  75. Shor B, Gerber H-P, Sapra P (2014) Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. J Control Release 67:107–116. https://doi.org/10.1016/j.molimm.2014.09.014

    Article  CAS  Google Scholar 

  76. Baron J, Wang ES (2018) Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev Clin Pharmacol 11:549–559. https://doi.org/10.1080/17512433.2018.1478725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gillies ER, Goodwin AP, Fréchet JMJ (2004) Acetals as pH-sensitive linkages for drug delivery. Bioconjug Chem 15:1254–1263. https://doi.org/10.1021/bc049853x

    Article  CAS  PubMed  Google Scholar 

  78. Deshmukh M, Chao P, Kutscher HL et al (2010) A series of alpha-amino acid ester prodrugs of camptothecin: in vitro hydrolysis and A549 human lung carcinoma cell cytotoxicity. J Med Chem 53:1038–1047. https://doi.org/10.1021/jm901029n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ji K, Lee C, Janesko BG, Simanek EE (2015) Triazine-substituted and acyl Hydrazones: experiment and computation reveal a stability inversion at low pH. Mol Pharm 12:2924–2927. https://doi.org/10.1021/acs.molpharmaceut.5b00205

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Bhattacharyya J, Mastria E, Chilkoti A (2017) A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 260:100–110. https://doi.org/10.1016/j.jconrel.2017.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang J, Chen H, Vlahov IR et al (2007) Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther 321:462–468. https://doi.org/10.1124/jpet.106.117648

    Article  CAS  PubMed  Google Scholar 

  82. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827. https://doi.org/10.1038/nrd4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kellogg BA, Garrett L, Kovtun Y et al (2011) Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 22:717–727. https://doi.org/10.1021/bc100480a

    Article  CAS  PubMed  Google Scholar 

  84. Pillow TH, Sadowsky JD, Zhang D et al (2016) Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci 8:366–370. https://doi.org/10.1039/c6sc01831a

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pan A, Zhang H, Li Y et al (2016) Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 27:425103. https://doi.org/10.1088/0957-4484/27/42/425103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qi R, Wang Y, Bruno PM et al (2017) Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nat Commun 8:2166. https://doi.org/10.1038/s41467-017-02390-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Feener EP, Shen WC, Ryser HJ (1990) Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. J Biol Chem 265:18780–18785

    Article  CAS  Google Scholar 

  88. Austin CD, Wen X, Gazzard L et al (2005) Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc Natl Acad Sci U S A 102:17987–17992. https://doi.org/10.1073/pnas.0509035102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang J, Chen H, Vlahov IR et al (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci U S A 103:13872–13877. https://doi.org/10.1073/pnas.0601455103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jeffrey SC, Andreyka JB, Bernhardt SX et al (2006) Development and properties of β-glucuronide linkers for monoclonal antibody−drug conjugates. Bioconjug Chem 17:831. https://doi.org/10.1021/bc0600214

    Article  CAS  PubMed  Google Scholar 

  91. Modi S, Saura C, Yamashita T et al (2019) Trastuzumab Deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med 382:610–621. https://doi.org/10.1056/NEJMoa1914510

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anami Y, Yamazaki CM, Xiong W et al (2018) Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat Commun 9:2512. https://doi.org/10.1038/s41467-018-04982-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Padilla L, Willner D, Mosure K (2002) Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing Immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug Chem 13:855. https://doi.org/10.1021/bc025536j

    Article  CAS  PubMed  Google Scholar 

  94. Caculitan NG, Cruz-Chuh Dela J, Ma Y et al (2017) Cathepsin B is dispensable for cellular processing of Cathepsin B-cleavable antibody-drug conjugates. Cancer Res 77:7027–7037. https://doi.org/10.1158/0008-5472.CAN-17-2391

    Article  CAS  PubMed  Google Scholar 

  95. Challita-Eid PM, Satpayev D, Yang P et al (2016) Enfortumab Vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res 76:3003–3013. https://doi.org/10.1158/0008-5472.CAN-15-1313

    Article  CAS  PubMed  Google Scholar 

  96. Dornan D, Bennett F, Chen Y et al (2009) Therapeutic potential of an anti-CD79b antibody-drug conjugate, anti-CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood 114:2721–2729. https://doi.org/10.1182/blood-2009-02-205500

    Article  CAS  PubMed  Google Scholar 

  97. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784. https://doi.org/10.1038/nbt832

    Article  CAS  PubMed  Google Scholar 

  98. Lee B-C, Chalouni C, Doll S et al (2018) FRET reagent reveals the intracellular processing of peptide-linked antibody-drug conjugates. Bioconjug Chem 29:2468–2477. https://doi.org/10.1021/acs.bioconjchem.8b00362

    Article  CAS  PubMed  Google Scholar 

  99. Porel M, Alabi CA (2014) Sequence-defined polymers via orthogonal allyl acrylamide building blocks. J Am Chem Soc 136:13162–13165. https://doi.org/10.1021/ja507262t

    Article  CAS  PubMed  Google Scholar 

  100. Porel M, Thornlow DN, Phan NN, Alabi CA (2016) Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction. Nat Chem 8:590–596. https://doi.org/10.1038/nchem.2508

    Article  CAS  PubMed  Google Scholar 

  101. Phan NN, Li C, Alabi CA (2018) Intracellular delivery via noncharged sequence-defined cell-penetrating oligomers. Bioconjug Chem 29:2628–2635. https://doi.org/10.1021/acs.bioconjchem.8b00336

    Article  CAS  PubMed  Google Scholar 

  102. Sorkin MR, Walker JA, Brown JS, Alabi CA (2017) Versatile platform for the synthesis of orthogonally cleavable Heteromultifunctional cross-linkers. Bioconjug Chem 28:907–912. https://doi.org/10.1021/acs.bioconjchem.7b00033

    Article  CAS  PubMed  Google Scholar 

  103. Brown JS, Acevedo YM, He GD et al (2017) Synthesis and solution-phase characterization of sulfonated Oligothioetheramides. Macromolecules 50:8731–8738. https://doi.org/10.1021/acs.macromol.7b01915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Adumeau P, Vivier D, Sharma SK et al (2018) Site-specifically labeled antibody-drug conjugate for simultaneous therapy and ImmunoPET. Mol Pharm 15:892–898. https://doi.org/10.1021/acs.molpharmaceut.7b00802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kazane SA, Sok D, Cho EH et al (2012) Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc Natl Acad Sci U S A 109:3731–3736. https://doi.org/10.1073/pnas.1120682109

    Article  PubMed  PubMed Central  Google Scholar 

  106. Strop P, Liu S-H, Dorywalska M et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20:161–167. https://doi.org/10.1016/j.chembiol.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  107. Drake PM, Albers AE, Baker J et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25:1331–1341. https://doi.org/10.1021/bc500189z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang BCB, Kim YC, Bañas S et al (2018) Antibody-drug conjugate library prepared by scanning insertion of the aldehyde tag into IgG1 constant regions. MAbs 10:1182–1189. https://doi.org/10.1080/19420862.2018.1512327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ohri R, Bhakta S, Fourie-O'Donohue A et al (2018) High-throughput cysteine scanning to identify stable antibody conjugation sites for Maleimide- and disulfide-based linkers. Bioconjug Chem 29:473–485. https://doi.org/10.1021/acs.bioconjchem.7b00791

    Article  CAS  PubMed  Google Scholar 

  110. Farias SE, Strop P, Delaria K et al (2014) Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem 25:240–250. https://doi.org/10.1021/bc4003794

    Article  CAS  PubMed  Google Scholar 

  111. Jeger S, Zimmermann K, Blanc A et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl 49:9995–9997. https://doi.org/10.1002/anie.201004243

    Article  CAS  PubMed  Google Scholar 

  112. Walker JA, Bohn JJ, Ledesma F et al (2019) Substrate design enables heterobifunctional, dual “click” antibody modification via microbial transglutaminase. Bioconjug Chem 30:2452–2457. https://doi.org/10.1021/acs.bioconjchem.9b00522

    Article  CAS  PubMed  Google Scholar 

  113. Gundersen MT, Keillor JW, Pelletier JN (2013) Microbial transglutaminase displays broad acyl-acceptor substrate specificity. Appl Microbiol Biotechnol 98:219–230. https://doi.org/10.1007/s00253-013-4886-x

    Article  CAS  PubMed  Google Scholar 

  114. Davis ME (2009) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61:1189–1192. https://doi.org/10.1016/j.addr.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  115. Kim SH, Jeong J-H, Kim T-I et al (2008) VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Mol Pharm 6:718–726. https://doi.org/10.1021/mp800161e

    Article  CAS  Google Scholar 

  116. Burke PJ, Hamilton JZ, Jeffrey SC et al (2016) Optimization of a PEGylated glucuronide-Monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther 16:116–123. https://doi.org/10.1158/1535-7163.MCT-16-0343

    Article  CAS  PubMed  Google Scholar 

  117. Li F, Lu J, Liu J et al (2017) A water-soluble nucleolin aptamer-paclitaxel conjugate for tumor-specific targeting in ovarian cancer. Nat Commun 8:1390. https://doi.org/10.1038/s41467-017-01565-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Alabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Walker, J.A., Sorkin, M.R., Alabi, C.A. (2021). Quantitative Determination of Intracellular Bond Cleavage. In: Rosania, G.R., Thurber, G.M. (eds) Quantitative Analysis of Cellular Drug Transport, Disposition, and Delivery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1250-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1250-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1249-1

  • Online ISBN: 978-1-0716-1250-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics