Skip to main content

Pluripotent Stem Cells for Cell Therapy

  • Protocol
  • First Online:
In Vitro Models for Stem Cell Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2269))

  • 1279 Accesses

Abstract

In an increasingly geriatric population, in which elderly people frequently face chronic diseases and degenerative conditions, cell therapies as part of novel regenerative medicine approaches are of great interest. Even though today’s cell therapies mostly rely on adult stem cells like the mesenchymal stem cells or primary somatic cells, pluripotent stem cells represent an enormously versatile cell model to explore possible new avenues in the field of regenerative medicine due to their capacity to grow indefinitely and to differentiate into the desired cell types. The discovery of reprogramming somatic cells into induced pluripotent stem cells augmented the pool of applicable cell entities so that researchers nowadays can resort to embryonic stem cells, but also to a plethora of patient- and disease-specific induced pluripotent stem cells. The ease of targeted genome engineering is an additional benefit that allows using pluripotent stem cells for disease modeling, drug discovery, and the development of cell therapies. However, the task is still demanding as the generation of subpopulations and a sufficient cell maturation for some cell entities have yet to be achieved. Likewise, even though for some applications the cells of interest can be produced in the large-scale dimensions and purity that are required for clinical purposes, proper integration, and function in the host tissue remain challenging. Nonetheless, the immense progress that has been made over the last decades warrants the prominent role of pluripotent stem cells in regenerative medicine as in vitro models to broaden our knowledge of disease onset/progression and treatment as well as in vivo as a substitution of damaged/aged tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joseph P, Leong D, McKee M et al (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694

    Article  CAS  PubMed  Google Scholar 

  2. Lee JH, Protze SI, Laksman Z et al (2017) Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21:179–194

    Article  CAS  PubMed  Google Scholar 

  3. Zhang JZ, Termglinchan V, Shao NY et al (2019) A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell 24:802–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Devalla HD, Schwach V, Ford JW (2015) Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharmacology. EMBO Mol Med 7:394–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laksman Z, Wauchop M, Lin E et al (2017) Modeling atrial fibrillation using human embryonic stem cell-derived atrial tissue. Sci Rep 7:5268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lemme M, Ulmer BM, Lemoine MD et al (2018) Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Reports 11:1378–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lemme M, Ulmer BM, Lemoine MD et al (2018) Atrial-like engineered heart tissue: an in vitro model of the human atrium. Stem Cell Rep 11:1378–1390

    Article  CAS  Google Scholar 

  8. Birket MJ, Ribeiro MC, Verkerk AO et al (2015) Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol 33:970–979

    Article  CAS  PubMed  Google Scholar 

  9. Liang W, Han P, Kim EH et al (2019) Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells. Stem Cells 38:352. https://doi.org/10.1002/stem.3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schweizer PA, Darche FF, Ullrich ND et al (2017) Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 8:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gambardella L, McManus SA, Moignard V et al (2019) BNC1 regulates cell heterogeneity in human pluripotent stem cell derived-epicardium. Development 146:dev174441. https://doi.org/10.1242/dev.174441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guadix JA, Orlova VV, Giacomelli E et al (2017) Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep 9:1754–1764

    Article  CAS  Google Scholar 

  13. Iyer D, Gambardella L, Bernard WG et al (2016) Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 143:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Piquereau J, Ventura-Clapier R (2018) Maturation of cardiac energy metabolism during perinatal development. Front Physiol 9:959

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parikh SS, Blackwell DJ, Gomez-Hurtado N et al (2017) Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 121:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Correia C, Koshkin A, Duarte P et al (2017) Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep 7:8590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Horikoshi Y, Yan Y, Terashvili M et al (2019) Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cell 8(9):1095. https://doi.org/10.3390/cells8091095

    Article  CAS  Google Scholar 

  18. Lin B, Lin X, Stachel M et al (2017) Culture in glucose-depleted medium supplemented with fatty acid and 3,3′,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front Endocrinol (Lausanne) 8:253

    Article  Google Scholar 

  19. Kadari A, Mekala S, Wagner N et al (2015) Robust generation of cardiomyocytes from human iPS cells requires precise modulation of BMP and WNT signaling. Stem Cell Rev Rep 11:560–569

    Article  CAS  PubMed  Google Scholar 

  20. Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Article  CAS  PubMed  Google Scholar 

  21. Benzoni P, Campostrini G, Landi S et al (2019) Human iPSC modeling of a familial form of atrial fibrillation reveals a gain of function of if and ICaL in patient-derived cardiomyocytes. Cardiovasc Res 116:1147. https://doi.org/10.1093/cvr/cvz217

    Article  CAS  PubMed Central  Google Scholar 

  22. Shafaattalab S, Lin E, Christidi E (2019) Ibrutinib displays atrial-specific toxicity in human stem cell-derived cardiomyocytes. Stem Cell Rep 12:996–1006

    Article  CAS  Google Scholar 

  23. Shiba Y, Fernandes S, Zhu WZ et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu YW, Chen B, Yang X et al (2018) Erratum: human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:899

    Article  CAS  PubMed  Google Scholar 

  25. Liu YW, Chen B, Yang X et al (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Romagnuolo R, Masoudpour H, Porta-Sanchez A et al (2019) Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep 12:967–981

    Article  Google Scholar 

  27. Menasche P, Vanneaux V, Hagege A et al (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71:429–438

    Article  PubMed  Google Scholar 

  28. Martin U (2017) Therapeutic application of pluripotent stem cells: challenges and risks. Front Med (Lausanne) 4:229

    Article  Google Scholar 

  29. Benito-Kwiecinski S, Lancaster MA (2019) Brain organoids: human neurodevelopment in a dish. Cold Spring Harb Perspect Biol 12:a035709. https://doi.org/10.1101/cshperspect.a035709

    Article  CAS  Google Scholar 

  30. Sakaguchi H, Kadoshima T, Soen M et al (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896

    Article  CAS  PubMed  Google Scholar 

  31. Qian X, Nguyen HN, Song MM et al (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qian X, Jacob F, Song MM et al (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13:565–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muguruma K, Nishiyama A, Kawakami H et al (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–550

    Article  CAS  PubMed  Google Scholar 

  34. Meinhardt A, Eberle D, Tazaki A et al (2014) 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep 3:987–999

    Article  Google Scholar 

  35. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  36. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mansour AA, Goncalves JT, Bloyd CW et al (2018) Erratum: an in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36:772

    Article  CAS  PubMed  Google Scholar 

  38. Mansour AA, Goncalves JT, Bloyd CW (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36:432–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiang Y, Yoshiaki T, Patterson B (2018) Generation and fusion of human cortical and medial ganglionic Eminence brain organoids. Curr Protoc Stem Cell Biol 47(1). https://doi.org/10.1002/cpsc.61

  40. Song L, Yuan X, Jones Z et al (2019) Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep 9:5977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yoon SJ, Elahi LS, Pasca AM et al (2019) Reliability of human cortical organoid generation. Nat Methods 16:75–78

    Article  CAS  PubMed  Google Scholar 

  42. Amin ND, Pasca SP (2018) Building models of brain disorders with three-dimensional organoids. Neuron 100:389–405

    Article  CAS  PubMed  Google Scholar 

  43. Kamao H, Mandai M, Okamoto S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218

    Article  CAS  Google Scholar 

  44. Matsumoto E, Koide N, Hanzawa H et al (2019) Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One 14:e0212369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kawamata S, Kanemura H, Sakai N et al (2015) Design of a tumorigenicity test for induced pluripotent stem cell (iPSC)-derived cell products. J Clin Med 4:159–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hori K, Kuwabara J, Tanaka Y (2019) A simple and static preservation system for shipping retinal pigment epithelium cell sheets. J Tissue Eng Regen Med 13:459–468

    Article  CAS  PubMed  Google Scholar 

  47. Kitahata S, Tanaka Y, Hori K et al (2019) Critical functionality effects from storage temperature on human induced pluripotent stem cell-derived retinal pigment epithelium cell suspensions. Sci Rep 9:2891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Takagi S, Mandai M, Gocho K et al (2019) Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina 3:850–859

    Article  PubMed  Google Scholar 

  49. Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376:1038–1046

    Article  CAS  PubMed  Google Scholar 

  50. Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cogger KF, Sinha A, Sarangi F et al (2017) Glycoprotein 2 is a specific cell surface marker of human pancreatic progenitors. Nat Commun 8:331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Millman JR, Xie C, Van DA et al (2016) Corrigendum: generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:12,379

    Article  CAS  Google Scholar 

  53. Millman JR, Xie C, Van DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11,463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.S.S. is funded by the German Federal Ministry of Education and Research (BMBF, support code 02NUK049A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insa S. Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schroeder, I.S. (2021). Pluripotent Stem Cells for Cell Therapy. In: Stock, P., Christ, B. (eds) In Vitro Models for Stem Cell Therapy. Methods in Molecular Biology, vol 2269. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1225-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1225-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1224-8

  • Online ISBN: 978-1-0716-1225-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics