Skip to main content

Rewiring Endogenous Bioelectric Circuits in the Xenopus laevis Embryo Model

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Embryogenesis, as well as regeneration, is increasingly recognized to be orchestrated by an interplay of transcriptional and bioelectric networks. Spatiotemporal patterns of resting potentials direct the size, shape, and locations of numerous organ primordia during patterning. These bioelectrical properties are established by the function of ion channels and pumps that set voltage potentials of individual cells, and gap junctions (electrical synapses) that enable physiological states to propagate across tissue networks. Functional experiments to probe the roles of bioelectrical states can be carried out by targeting endogenous ion channels during development. Here, we describe protocols, optimized for the highly tractable Xenopus laevis embryo, for molecular genetic targeting of ion channels and connexins based on CRISPR, and monitoring of resting potential states using voltage-sensing fluorescent dye. Similar strategies can be adapted to other model species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sundelacruz S, Levin M, Kaplan DL (2008) Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3:e3737

    Article  Google Scholar 

  2. Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5:231–246

    Article  Google Scholar 

  3. Funk RH (2015) Endogenous electric fields as guiding cue for cell migration. Front Physiol 6:143

    Article  Google Scholar 

  4. Levin M, Martyniuk CJ (2018) The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems 164:76–93. https://doi.org/10.1016/j.biosystems.2017.08.009

    Article  PubMed  Google Scholar 

  5. Adams DS et al (2006) Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133:1657–1671

    Article  CAS  Google Scholar 

  6. Levin M (2017) Seminars in cell & developmental biology. Elsevier, Amsterdam, pp 543–556

    Google Scholar 

  7. McLaughlin KA, Levin M (2017) Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol 433(2):177–189

    Article  Google Scholar 

  8. Mathews J, Levin M (2017) Gap junctional signaling in pattern regulation: physiological network connectivity instructs growth and form. Dev Neurobiol 77:643–673. https://doi.org/10.1002/dneu.22405

    Article  PubMed  Google Scholar 

  9. Bates E (2015) Ion channels in development and cancer. Annu Rev Cell Dev Biol 31:231–247. https://doi.org/10.1146/annurev-cellbio-100814-125338

    Article  CAS  PubMed  Google Scholar 

  10. Adams DS, Levin M (2013) Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352:95–122. https://doi.org/10.1007/s00441-012-1329-4

    Article  CAS  PubMed  Google Scholar 

  11. Chernet BT, Adams DS, Lobikin M, Levin M (2016) Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 7:19575–19588. https://doi.org/10.18632/oncotarget.8036

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adams DS et al (2016) Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 594:3245–3270. https://doi.org/10.1113/JP271930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adams DS, Lemire JM, Kramer RH, Levin M (2014) Optogenetics in developmental biology: using light to control ion flux-dependent signals in Xenopus embryos. Int J Dev Biol 58:851–861. https://doi.org/10.1387/ijdb.140207ml

    Article  CAS  Google Scholar 

  14. Adams DS, Tseng AS, Levin M (2013) Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol Open 2:306–313. https://doi.org/10.1242/bio.20133665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams DS, Levin M (2006) Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 44:530–540

    Article  CAS  Google Scholar 

  16. Sullivan KG, Levin M (2018) Inverse drug screening of bioelectric signaling and neurotransmitter roles: illustrated using a xenopus tail regeneration assay. Cold Spring Harb Protoc 2018:pdb.prot099937. https://doi.org/10.1101/pdb.prot099937

    Article  Google Scholar 

  17. Belus MT et al (2018) Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol 444(Suppl 1):S297–S307. https://doi.org/10.1016/j.ydbio.2018.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ardissone A, Sansone V, Colleoni L, Bernasconi P, Moroni I (2017) Intrafamilial phenotypic variability in Andersen-Tawil syndrome: a diagnostic challenge in a potentially treatable condition. Neuromuscul Disord 27:294–297. https://doi.org/10.1016/j.nmd.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Dahal GR et al (2012) An inwardly rectifying K+ channel is required for patterning. Development 139:3653–3664. https://doi.org/10.1242/dev.078592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marrus SB, Cuculich PS, Wang W, Nerbonne JM (2011) Characterization of a novel, dominant negative KCNJ2 mutation associated with Andersen-Tawil syndrome. Channels (Austin) 5:500–509. https://doi.org/10.4161/chan.5.6.18524

    Article  CAS  Google Scholar 

  21. George LF et al (2019) Ion channel contributions to wing development in Drosophila melanogaster. G3 (Bethesda) 9(4):999–1008. https://doi.org/10.1534/g3.119.400028

    Article  CAS  Google Scholar 

  22. Smith RS et al (2018) Sodium channel SCN3A (NaV1.3) regulation of human cerebral cortical folding and oral motor development. Neuron 99:905–913 .e907. https://doi.org/10.1016/j.neuron.2018.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Masotti A et al (2015) Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K(+) channel encoded by KCNJ6. Am J Hum Genet 96:295–300. https://doi.org/10.1016/j.ajhg.2014.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kortum F et al (2015) Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat Genet 47(6):661–667. https://doi.org/10.1038/ng.3282

    Article  CAS  PubMed  Google Scholar 

  25. Veale EL, Hassan M, Walsh Y, Al-Moubarak E, Mathie A (2014) Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome. Mol Pharmacol 85:397–407. https://doi.org/10.1124/mol.113.090530

    Article  CAS  PubMed  Google Scholar 

  26. Curran J, Mohler PJ (2015) Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification. Annu Rev Physiol 77:505–524

    Article  CAS  Google Scholar 

  27. Perathoner S et al (2014) Bioelectric signaling regulates size in zebrafish fins. PLoS Genet e1004080:10

    Google Scholar 

  28. Hoptak-Solga AD, Klein KA, DeRosa AM, White TW, Iovine MK (2007) Zebrafish short fin mutations in connexin43 lead to aberrant gap junctional intercellular communication. FEBS Lett 581:3297–3302

    Article  CAS  Google Scholar 

  29. La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809

    Article  Google Scholar 

  30. Beck CW, Slack JM (2001) An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2:reviews1029

    Article  CAS  Google Scholar 

  31. Blum M, Ott T (2018) Xenopus: an undervalued model organism to study and model human genetic disease. Cells Tissues Organs 205(5–6):303–313. https://doi.org/10.1159/000490898

    Article  CAS  PubMed  Google Scholar 

  32. Tseng AS (2017) Seeing the future: using Xenopus to understand eye regeneration. Genesis 55:1–2. https://doi.org/10.1002/dvg.23003

    Article  Google Scholar 

  33. Getwan M, Lienkamp SS (2017) Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 369:143–157. https://doi.org/10.1007/s00441-017-2611-2

    Article  PubMed  Google Scholar 

  34. Dubey A, Saint-Jeannet JP (2017) Modeling human craniofacial disorders in Xenopus. Curr Pathobiol Rep 5:79–92. https://doi.org/10.1007/s40139-017-0128-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Adams DS, Levin M (2012) Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harb Protoc 2012:459–464. https://doi.org/10.1101/pdb.prot067702

    Article  PubMed  PubMed Central  Google Scholar 

  36. Adams DS, Levin M (2012) General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harb Protoc 2012:385–397. https://doi.org/10.1101/pdb.top067710

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim EZ, Vienne J, Rosbash M, Griffith LC (2017) Non-reciprocal homeostatic compensation in Drosophila potassium channel mutants. J Neurophysiol 117(6):2125–2136. https://doi.org/10.1152/jn.00002.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pietak A, Levin M (2017) Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. J R Soc Interface 14(134):20170425. https://doi.org/10.1098/rsif.2017.0425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pietak A, Levin M (2016) Exploring instructive physiological signaling with the bioelectric tissue simulation engine (BETSE). Front Bioeng Biotechnol 4:55. https://doi.org/10.3389/fbioe.2016.00055

    Article  PubMed  PubMed Central  Google Scholar 

  40. Adams DS, Levin M (2012) Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4 (3) and CC2-DMPE. Cold Spring Harb Protoc 2012:pdb.prot067702

    PubMed  Google Scholar 

  41. Oviedo NJ, Nicolas CL, Adams DS, Levin M (2008) Live imaging of planarian membrane potential using DiBAC4 (3). Cold Spring Harb Protoc 2008:pdb.prot5055

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nanos, V., Levin, M. (2021). Rewiring Endogenous Bioelectric Circuits in the Xenopus laevis Embryo Model. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics