Skip to main content

Role of Exosomal MicroRNAs in Cell-to-Cell Communication

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

Exosomes, a type of extracellular vesicle, are small vesicles (30–100 nm) secreted into extracellular space from almost all types of cells. Exosomes mediate cell-to-cell communication carrying various biologically active molecules including microRNAs. Studies have shown that exosomal microRNAs play fundamental roles in healthy and pathological conditions such as immunity, cancer, and inflammation. In this chapter, we introduce the current knowledge on exosome biogenesis, techniques used in exosome research, and exosomal miRNA and their functions in biological and pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hafiane A, Daskalopoulou SS (2018) Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 85:213–222

    Article  CAS  PubMed  Google Scholar 

  2. Lane RE, Korbie D, Hill MM et al (2018) Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clin Transl Med 7:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Willms E, Cabanas C, Mager I et al (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol 9:738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chargaff E, West R (1946) The biological significance of the thromboplastic protein of blood. J Biol Chem 166:189–197

    Article  CAS  PubMed  Google Scholar 

  5. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288

    Article  CAS  PubMed  Google Scholar 

  6. Konoshenko MY, Lekchnov EA, Vlassov AV et al (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xu R, Rai A, Chen M et al (2018) Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 15(10):617–638. https://doi.org/10.1038/s41571-018-0036-9

    Article  CAS  PubMed  Google Scholar 

  8. Paolicelli RC, Bergamini G, Rajendran L (2018) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148–157. https://doi.org/10.1016/j.neuroscience.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Li C, Zhang L et al (2018) Extracellular vesicles as carriers of non-coding RNAs in liver diseases. Front Pharmacol 9:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lu M, Xing H, Xun Z et al (2018) Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. Eur J Pharm Sci 121:34–46

    Article  CAS  PubMed  Google Scholar 

  11. Alipoor SD, Mortaz E, Garssen J et al (2016) Exosomes and Exosomal miRNA in respiratory diseases. Mediat Inflamm 2016:5628404

    Article  CAS  Google Scholar 

  12. Yuan MJ, Maghsoudi T, Wang T (2016) Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 13:113–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bang C, Thum T (2012) Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 44:2060–2064

    Article  CAS  PubMed  Google Scholar 

  14. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978

    Article  CAS  PubMed  Google Scholar 

  15. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  CAS  PubMed  Google Scholar 

  16. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emanueli C, Shearn AI, Angelini GD et al (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30

    Article  CAS  Google Scholar 

  19. Record M, Subra C, Silvente-Poirot S et al (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81:1171–1182

    Article  CAS  PubMed  Google Scholar 

  20. Samanta S, Rajasingh S, Drosos N et al (2018) Exosomes: new molecular targets of diseases. Acta Pharmacol Sin 39:501–513

    Article  CAS  PubMed  Google Scholar 

  21. Rajagopal C, Harikumar KB (2018) The origin and functions of exosomes in cancer. Front Oncol 8:66

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jones LB, Bell CR, Bibb KE et al (2018) Pathogens and their effect on exosome biogenesis and composition. Biomedicine 6:79

    Google Scholar 

  23. Farooqi AA, Desai NN, Qureshi MZ et al (2018) Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 36:328–334

    Article  CAS  PubMed  Google Scholar 

  24. Bebelman MP, Smit MJ, Pegtel DM et al (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  25. Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36:301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  27. Brinton LT, Sloane HS, Kester M et al (2015) Formation and role of exosomes in cancer. Cell Mol Life Sci 72:659–671

    Article  CAS  PubMed  Google Scholar 

  28. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208

    Article  CAS  PubMed  Google Scholar 

  29. Boriachek K, Islam MN, Moller A et al (2018) Biological functions and current advances in isolation and detection strategies for exosome Nanovesicles. Small 14

    Google Scholar 

  30. Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C et al (2014) Sorting it out: regulation of exosome loading. Semin Cancer Biol 28:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beach A, Zhang HG, Ratajczak MZ et al (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. O’Loughlin AJ, Woffindale CA, Wood MJ (2012) Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 12:262–274

    Article  PubMed  Google Scholar 

  34. Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146

    Article  PubMed  Google Scholar 

  35. Thind A, Wilson C (2016) Exosomal miRNAs as cancer biomarkers and therapeutic targets. J Extracell Vesicles 5:31292

    Article  PubMed  CAS  Google Scholar 

  36. Zomer A, Vendrig T, Hopmans ES et al (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3:447–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F et al (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980

    Article  PubMed  CAS  Google Scholar 

  38. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV et al (2014) Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 8:1649–1658

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson SW, Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release 228:179–190

    Article  CAS  PubMed  Google Scholar 

  40. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhome R, Del Vecchio F, Lee GH et al (2018) Exosomal microRNAs (exomiRs): small molecules with a big role in cancer. Cancer Lett 420:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Squadrito ML, Baer C, Burdet F et al (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8:1432–1446

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Kaslan M, Lee SH et al (2017) Progress in exosome isolation techniques. Theranostics 7:789–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Momen-Heravi F, Getting SJ, Moschos SA (2018) Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacol Ther 192:170–187. https://doi.org/10.1016/j.pharmthera.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Wang Y, Xiao K et al (2018) Emerging role of exosomes in the joint diseases. Cell Physiol Biochem 47:2008–2017

    Article  CAS  PubMed  Google Scholar 

  46. Cheruiyot C, Pataki Z, Ramratnam B et al (2018) Proteomic analysis of exosomes and its application in HIV-1 infection. Proteomics Clin Appl 12(5):e1700142. https://doi.org/10.1002/prca.201700142

    Article  CAS  PubMed  Google Scholar 

  47. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu JY, Chen GH, Yang YJ (2017) Exosomes: a rising star in falling hearts. Front Physiol 8:494

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lawson C, Vicencio JM, Yellon DM et al (2016) Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol 228:R57–R71

    Article  PubMed  Google Scholar 

  50. van der Pol E, Hoekstra AG, Sturk A et al (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8:2596–2607

    Article  PubMed  Google Scholar 

  51. Hergenreider E, Heydt S, Treguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Huang W, Liu G et al (2014) Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 74:139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Y, Li Y, Chen X et al (2016) Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl) 94:711–724

    Article  CAS  Google Scholar 

  54. Sukma Dewi I, Celik S, Karlsson A et al (2017) Exosomal miR-142-3p is increased during cardiac allograft rejection and augments vascular permeability through down-regulation of endothelial RAB11FIP2 expression. Cardiovasc Res 113:440–452

    PubMed  Google Scholar 

  55. Tang N, Sun B, Gupta A et al (2016) Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-kappaB in endothelial cells. FASEB J 30:3097–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Zhang C, Liu L et al (2017) Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 25:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nguyen MA, Karunakaran D, Geoffrion M et al (2018) Extracellular vesicles secreted by Atherogenic macrophages transfer MicroRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol 38:49–63

    Article  CAS  PubMed  Google Scholar 

  58. Poon KS, Palanisamy K, Chang SS et al (2017) Plasma exosomal miR-223 expression regulates inflammatory responses during cardiac surgery with cardiopulmonary bypass. Sci Rep 7:10807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tian C, Gao L, Zimmerman MC et al (2018) Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol 314:H928–H939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barile L, Lionetti V, Cervio E et al (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541

    Article  CAS  PubMed  Google Scholar 

  62. Chen J, Cui C, Yang X et al (2017) MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res 8:374–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun LL, Duan MJ, Ma JC et al (2018) Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. J Mol Cell Cardiol 120:12–27

    Article  CAS  PubMed  Google Scholar 

  64. Yang M, Chen J, Su F et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Le MT, Hamar P, Guo C et al (2014) miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124:5109–5128

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhuang G, Wu X, Jiang Z et al (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kosaka N, Iguchi H, Hagiwara K et al (2013) Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 288:10849–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qin X, Yu S, Zhou L et al (2017) Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine 12:3721–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maia J, Caja S, Strano Moraes MC et al (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  70. Donnarumma E, Fiore D, Nappa M et al (2017) Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8:19592–19608

    Article  PubMed  PubMed Central  Google Scholar 

  71. Richards KE, Zeleniak AE, Fishel ML et al (2017) Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells. Oncogene 36:1770–1778

    Article  CAS  PubMed  Google Scholar 

  72. Ying X, Wu Q, Wu X et al (2016) Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 7:43076–43087

    Article  PubMed  PubMed Central  Google Scholar 

  73. van der Vos KE, Abels ER, Zhang X et al (2016) Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro-Oncology 18:58–69

    Article  PubMed  CAS  Google Scholar 

  74. Li CC, Eaton SA, Young PE et al (2013) Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol 10:1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang L, Zhang S, Yao J et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fong MY, Zhou W, Liu L et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gui Y, Liu H, Zhang L et al (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6:37043–37053

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cao XY, Lu JM, Zhao ZQ et al (2017) MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett 644:94–99

    Article  CAS  PubMed  Google Scholar 

  79. Cheng L, Doecke JD, Sharples RA et al (2015) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20:1188–1196

    Article  CAS  PubMed  Google Scholar 

  80. Lugli G, Cohen AM, Bennett DA et al (2015) Plasma Exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One 10:e0139233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ebrahimkhani S, Vafaee F, Young PE et al (2017) Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 7:14293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kimura K, Hohjoh H, Fukuoka M et al (2018) Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 9:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xu B, Zhang Y, Du XF et al (2017) Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 27:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pusic AD, Kraig RP (2014) Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination. Glia 62:284–299

    Article  PubMed  Google Scholar 

  85. Li JJ, Wang B, Kodali MC et al (2018) In vivo evidence for the contribution of peripheral circulating inflammatory exosomes to neuroinflammation. J Neuroinflammation 15:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Meldolesi J (2019) Extracellular vesicles, news about their role in immune cells: physiology, pathology and diseases. Clin Exp Immunol 196:318–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fox DA, Gizinski A, Morgan R et al (2010) Cell-cell interactions in rheumatoid arthritis synovium. Rheum Dis Clin N Am 36:311–323

    Article  Google Scholar 

  88. Kim SJ, Chen Z, Essani AB et al (2016) Identification of a novel toll-like receptor 7 endogenous ligand in rheumatoid arthritis synovial fluid that can provoke arthritic joint inflammation. Arthritis Rheumatol 68:1099–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Maeda Y, Farina NH, Matzelle MM et al (2017) Synovium-derived MicroRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 32:461–472

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y, Xu D, Yan S et al (2018) MiR-548a-3p regulates inflammatory response via TLR4/NF-kappaB signaling pathway in rheumatoid arthritis. J Cell Biochem. https://doi.org/10.1002/jcb.26659

  91. Okoye IS, Coomes SM, Pelly VS et al (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    Article  PubMed  CAS  Google Scholar 

  93. Mao K, Chen S, Chen M et al (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 23:201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Montecalvo A, Larregina AT, Shufesky WJ et al (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alexander M, Hu R, Runtsch MC et al (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6:7321

    Article  CAS  PubMed  Google Scholar 

  96. Mann M, Mehta A, Zhao JL et al (2017) An NF-kappaB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 8:851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Alexander M, Ramstead AG, Bauer KM et al (2017) Rab27-dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. J Immunol 199:3559–3570

    Article  CAS  PubMed  Google Scholar 

  98. Peng H, Li H, Sheehy A et al (2016) Dimethyl fumarate alters microglia phenotype and protects neurons against proinflammatory toxic microenvironments. J Neuroimmunol 299:35–44

    Article  CAS  PubMed  Google Scholar 

  99. Ju S, Mu J, Dokland T et al (2013) Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 21:1345–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mu J, Zhuang X, Wang Q et al (2014) Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 58:1561–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang M, Viennois E, Xu C et al (2016) Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 4:e1134415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Xiao J, Feng S, Wang X et al (2018) Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ 6:e5186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Bagci C, Allmer J (2016) One step forward, two steps Back; Xeno-MicroRNAs reported in breast Milk are artifacts. PLoS One 11:e0145065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sermin Genc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tastan, B., Tarakcioglu, E., Birinci, Y., Park, Y., Genc, S. (2022). Role of Exosomal MicroRNAs in Cell-to-Cell Communication. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics