Skip to main content

Genotype-Independent Regeneration and Transformation Protocol for Rice Cultivars

  • Protocol
  • First Online:
Rice Genome Engineering and Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2238))

Abstract

Developing an efficient and reproducible plant transformation protocol relies on callus induction and plant regeneration, which is prerequisite for genetic enhancement of crops, especially rice. The present study has been carried out in order to establish a genotype-independent regeneration and biolistic transformation protocol for rice varieties. Putative transgenic rice lines were confirmed by PCR analysis, DNA sequencing, and Southern analysis. The transformation protocol reported here is relatively simple and consistent and can be exploited in future biotechnological investigations particularly for gene transformation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadiarto T, Tran LSP (2011) Progress studies of drought responsive genes in rice. Plant Cell Rep 30(3):297–310

    Article  CAS  Google Scholar 

  2. Sasaki T (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  3. Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1(1):3–10

    Article  Google Scholar 

  4. Khush GS, Virk PS (2000) Rice breeding: achievement and future strategies. Crop Improv 27:115–144

    Google Scholar 

  5. Brookes G, Barfoot P (2003) GM rice: will this lead the way for global acceptance of GM crop technology? vol 28. International Service for the Acquisition of Agri-Biotech Applications (ISAAA), Ithaca, NY, p 53

    Google Scholar 

  6. Savary S, Willocquet L, Elazegui FA et al (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84(3):357–369

    Article  Google Scholar 

  7. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  Google Scholar 

  8. Puspasree P, Ebrahimali AS (2013) Protocol optimization and evaluation of rice varieties response to in vitro regeneration. Adv Biosci Biotechnol 4:647–653

    Article  Google Scholar 

  9. Tariq M, Ali G, Hadi F et al (2008) Callus induction and in vitro plant regeneration of rice (Oryza sativa L.) under various conditions. Pakistan J Biol Sci 11:255–259

    Article  CAS  Google Scholar 

  10. Fredeslinda CE, Rhodora RA, Lilian BU (2009) Callusing and regeneration potential of rice (Oryza sativa L.) genotypes toward the development for salt tolerance. Philipp J Sci 138:169–176

    Google Scholar 

  11. Ge X, Chu Z, Lin Y, Wang S (2006) A tissue culture system for different germplasms of indica rice. Plant Cell Rep 25:392–402

    Article  CAS  Google Scholar 

  12. Datta S, Datta K, Soltanifar N et al (1992) Herbicide-resistant Indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol 20:619–629

    Article  CAS  Google Scholar 

  13. Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Nat Biotechnol 6:1072–1074

    Article  CAS  Google Scholar 

  14. Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9:957–962

    Article  Google Scholar 

  15. Shri M, Rai A, Verma P et al (2013) An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars. Protoplasma 250:631–636

    Article  CAS  Google Scholar 

  16. Das S, Sanan-Mishra NA (2015) Direct method for genetically transforming rice seeds modelled with FHVB2, a suppressor of RNAi. Plant Cell Tissue Organ Cult 120:277–289

    Article  CAS  Google Scholar 

  17. Jiang J, Linscombe SD, Wang J, Oard JH (2000) High efficiency transformation of US rice lines from mature seed-derived calli and segregation of glufosinate resistance under field conditions. Crop Sci 40:1729–1741

    Article  Google Scholar 

  18. Khanna HK, Raina SK (2002) Elite indica transgenic rice plants expressing modified Cry1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to Yellow Stem Borer (Scirpophaga incertulas). Transgenic Res 11:411–423

    Article  CAS  Google Scholar 

  19. Tobias D, Manoharan M, Pritsch C, Dahleen L (2007) Co-bombardment integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon). Plant Cell Rep 26:631–639

    Article  CAS  Google Scholar 

  20. Tie W, Zhou F, Wang L et al (2012) Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Mol Biol 78(1–2):1–18

    Article  CAS  Google Scholar 

  21. Murashige T, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  22. Saharan V, Yadav RC, Yadav NR, Chapagain BP (2004) High frequency plant regeneration from desiccated calli of indica rice (Oryza sativa L.). Afr J Biotechnol 3(5):256–259

    Google Scholar 

  23. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  24. Zaidi MA, Narayan M, Sardana R et al (2006) Optimizing tissue culture media for efficient transformation of different indica genotypes. Agron Res 4:563–575

    Google Scholar 

Download references

Acknowledgments

We thank NASF (ICAR) Scheme Grant F. No. NASF/GTR-7025/2018-19 and ICGEB for the provision of extramural and core funds, respectively, to perform this piece of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanushri Kaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaul, T., Sony, S.K., Raman, N.M., Motelb, K.F.A., Bharti, J. (2021). Genotype-Independent Regeneration and Transformation Protocol for Rice Cultivars. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics