Skip to main content

Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9

  • Protocol
  • First Online:
Rice Genome Engineering and Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2238))

Abstract

CRISPR-Cas9 system is one sequence-specific nuclease (SSN) that has several advantages over zinc finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN), such as multiplex genome editing. With multiplex genome editing, CRISPR-Cas9 becomes a preferred SSN to edit many quantitative trait loci (QTL) simultaneously for trait improvement in major crops. A multiplexed CRISPR system is also important for deletion of a large fragment within a chromosome, analysis of the function of gene families, exon exchange, gene activation, and repression. Therefore, assembly of several single guide RNAs (sgRNAs) into one binary vector is the main step in multigene editing by CRISPR-Cas9. Different vector construction methods have been practiced including Golden Gate assembly. This chapter provides a detailed protocol for the construction of a T-DNA binary vector for expressing Cas9 and three sgRNAs for simultaneous targeting of three QTL genes for improving seed trait in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manuscript A (2007) NIH public access. 4(11):911–916

    Google Scholar 

  2. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9 mediated multiplex genome editing in rice. J Genet Genomics 43(8):529–532. https://doi.org/10.1016/j.jgg.2016.07.003

    Article  PubMed  Google Scholar 

  3. Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA, Cai G (2018) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38(10):1–11. https://doi.org/10.1007/s00299-018-2340-3

    Article  CAS  Google Scholar 

  4. Sunseri F (2017) Is genome editing techniques the new challenge for plant breeding? J Plant Genet Breed 1:e105

    Google Scholar 

  5. Rodrıguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome. Cell 171(2):470–480. https://doi.org/10.1016/j.cell.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  6. Yan W, Chen D, Kaufmann K (2016) Efficient multiplex mutagenesis by RNA- guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods 12(1):23. https://doi.org/10.1186/s13007-016-0125-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Tyagi A, Salgotra RK, Dar AA, Bhat R (2018) CRISPR/Cas approach: a new way of looking at plant-abiotic interactions. J Plant Physiol 224-225:156–162. https://doi.org/10.1016/j.jplph.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  8. Ghimire B (2017) Use of Crispr/Cas9 for development of disease resistant cultivars in plant breeding. Int J Appl Sci Biotechnol 5(4):403–409. https://doi.org/10.3126/ijasbt.v5i4.18523

    Article  CAS  Google Scholar 

  9. Gasparis S, Kała M, Przyborowski M, Łyżnik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR /Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14(1):111. https://doi.org/10.1186/s13007-018-0382-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar V, Jain M (2014) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66(1):47–57. https://doi.org/10.1093/jxb/eru429

    Article  CAS  PubMed  Google Scholar 

  11. Shen L, Hua Y, Fu Y, Li J, Lui Q, Jiao X, Xin G, Wang J, Wang X, Yan C, Wang K (2017) Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci 60(5):506–515. https://doi.org/10.1007/s11427-017-9008-8

    Article  CAS  PubMed  Google Scholar 

  12. Qi W, Zhu T, Tian Z, Li C, Zhang W, Song R (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16(1):58. https://doi.org/10.1186/s12896-016-0289-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84. https://doi.org/10.1016/j.copbio.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto R, Ueta R, Abe C, Osakabe Y, Osakabe K (2018) Efficient multiplex genome editing induces precise, and self-ligated type mutations in tomato plants. Front Plant Sci 9:916. https://doi.org/10.3389/fpls.2018.00916

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Mao Y, Ha S, Liu W, Botella JR, Zhu J (2016) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35(7):1519–1533. https://doi.org/10.1007/s00299-015-1900-z

    Article  CAS  PubMed  Google Scholar 

  16. Feng Z, Zhang Z, Hua K, Gao X, Mao Y, Botella JR, Zhu J (2018) A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous mutants for multiple genes in Arabidopsis. Int J Mol Sci 19(12):3925. https://doi.org/10.3390/ijms19123925

    Article  CAS  PubMed Central  Google Scholar 

  17. Xing H, Dong L, Wang Z, Zhang H, Han C, Lui B, Wang X, Chen Q (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14(1):327. https://doi.org/10.1186/s12870-014-0327-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Liu Y (2016) CRISPR/ Cas9-based multiplex genome editing in monocot and dicot plants. Curr Protoc Mol Biol 115(1):31–36. https://doi.org/10.1002/cpmb.10

    Article  PubMed  Google Scholar 

  19. Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu JK (2018) Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. J Integr Plant Biol 60(8):626–631. https://doi.org/10.1111/jipb.1263

    Article  CAS  PubMed  Google Scholar 

  20. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985. https://doi.org/10.1104/pp.15.00636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9(7):1088–1091. https://doi.org/10.1016/j.molp.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112(11):3570–3575. https://doi.org/10.1073/pnas.142029411223

    Article  CAS  PubMed  Google Scholar 

  23. Zheng X, Yang S, Zhang D, Zhong Z, Tang X, Deng K, Zhou J, Qi Y, Zhang Y (2016) Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Rep 35(7):1545–1554. https://doi.org/10.1007/s00299-016-1967-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants including the National Science Foundation of China (31771486), the Sichuan Youth Science and Technology Foundation (2017JQ0005), the National Transgenic Major Project (2018ZX08022001-003) and the Science Strength Promotion Program of UESTC to Y.Z., and the National Science Foundation Plant Genome Research Program (IOS-1758745) and USDA-NIFA Biotechnology Risk Assessment Research Program (2018-33522-28789) to Y.Q.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yimam, Y.T., Zhou, J., Akher, S.A., Zheng, X., Qi, Y., Zhang, Y. (2021). Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics