Skip to main content

Phenotypical Characterization and Isolation of Tumor-Derived Mouse Myeloid-Derived Suppressor Cells

  • Protocol
  • First Online:
Myeloid-Derived Suppressor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2236))

  • 1769 Accesses

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population composed of mature and immature cells of myeloid origin that play a major role in tumor progression by inhibiting the antitumor immune responses mediated by T cells. In this chapter, we describe protocols for isolation, phenotypical and functional evaluation of MDSCs isolated from mouse tumors, with the aim at unifying and standardizing protocols set up by different laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. https://doi.org/10.4049/jimmunol.0802740

    Article  CAS  PubMed  Google Scholar 

  3. De Sanctis F, Bronte V, Ugel S (2016) Tumor-induced myeloid-derived suppressor cells. Microbiol Spectr 4(3). https://doi.org/10.1128/microbiolspec.MCHD-0016-2015

  4. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425; author reply 426. https://doi.org/10.1158/0008-5472.CAN-06-3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. https://doi.org/10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  7. Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M, Yamane F, Minowa Y, Fukushima K, Ebina I, Yoshioka Y, Kumanogoh A, Akira S (2017) Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541(7635):96–101. https://doi.org/10.1038/nature20611

    Article  CAS  PubMed  Google Scholar 

  8. Yanez A, Coetzee SG, Olsson A, Muench DE, Berman BP, Hazelett DJ, Salomonis N, Grimes HL, Goodridge HS (2017) Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes. Immunity 47(5):890–902. e894. https://doi.org/10.1016/j.immuni.2017.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999. https://doi.org/10.4049/jimmunol.172.2.989

    Article  CAS  PubMed  Google Scholar 

  11. Solito S, Pinton L, De Sanctis F, Ugel S, Bronte V, Mandruzzato S, Marigo I (2019) Methods to measure MDSC immune suppressive activity in vitro and in vivo. Curr Protoc Immunol 124(1):e61. https://doi.org/10.1002/cpim.61

    Article  CAS  PubMed  Google Scholar 

  12. Strober W (2001) Monitoring cell growth. Curr Protoc Immunol Appendix 3:Appendix 3A. https://doi.org/10.1002/0471142735.ima03as21

    Article  CAS  PubMed  Google Scholar 

  13. Hanninen A, Maksimow M, Alam C, Morgan DJ, Jalkanen S (2011) Ly6C supports preferential homing of central memory CD8+ T cells into lymph nodes. Eur J Immunol 41(3):634–644. https://doi.org/10.1002/eji.201040760

    Article  CAS  PubMed  Google Scholar 

  14. Alissafi T, Hatzioannou A, Mintzas K, Barouni RM, Banos A, Sormendi S, Polyzos A, Xilouri M, Wielockx B, Gogas H, Verginis P (2018) Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest 128(9):3840–3852. https://doi.org/10.1172/JCI120888

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mondanelli G, Bianchi R, Pallotta MT, Orabona C, Albini E, Iacono A, Belladonna ML, Vacca C, Fallarino F, Macchiarulo A, Ugel S, Bronte V, Gevi F, Zolla L, Verhaar A, Peppelenbosch M, Mazza EMC, Bicciato S, Laouar Y, Santambrogio L, Puccetti P, Volpi C, Grohmann U (2017) A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 46(2):233–244. https://doi.org/10.1016/j.immuni.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102(11):4185–4190. https://doi.org/10.1073/pnas.0409783102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116(10):2777–2790. https://doi.org/10.1172/JCI28828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marigo I, Zilio S, Desantis G, Mlecnik B, Agnellini AHR, Ugel S, Sasso MS, Qualls JE, Kratochvill F, Zanovello P, Molon B, Ries CH, Runza V, Hoves S, Bilocq AM, Bindea G, Mazza EMC, Bicciato S, Galon J, Murray PJ, Bronte V (2016) T cell Cancer therapy requires CD40-CD40L activation of tumor necrosis factor and inducible nitric-oxide-synthase-producing dendritic cells. Cancer Cell 30(3):377–390. https://doi.org/10.1016/j.ccell.2016.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V, Plaen E, Van den Eynde BJ (2017) Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol Res 5(8):695–709. https://doi.org/10.1158/2326-6066.CIR-16-0400

    Article  CAS  PubMed  Google Scholar 

  20. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182(9):5693–5701. https://doi.org/10.4049/jimmunol.0900092

    Article  CAS  PubMed  Google Scholar 

  21. Zhu J, Powis de Tenbossche CG, Cane S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst AM, Liljestrom P, Uyttenhove C, Van den Eynde BJ (2017) Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun 8(1):1404. https://doi.org/10.1038/s41467-017-00784-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bruger AM, Dorhoi A, Esendagli G, Barczyk-Kahlert K, van der Bruggen P, Lipoldova M, Perecko T, Santibanez J, Saraiva M, Van Ginderachter JA, Brandau S (2019) How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother 68(4):631–644. https://doi.org/10.1007/s00262-018-2170-8

    Article  CAS  PubMed  Google Scholar 

  23. Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S (2015) Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 88(2):77–91. https://doi.org/10.1002/cyto.b.21206

    Article  CAS  PubMed  Google Scholar 

  24. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, To TKJ, Schug Z, Basu S, Wang F, Ricciotti E, DiRusso C, Murphy ME, Vonderheide RH, Lieberman PM, Mulligan C, Nam B, Hockstein N, Masters G, Guarino M, Lin C, Nefedova Y, Black P, Kagan VE, Gabrilovich DI (2019) Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569(7754):73–78. https://doi.org/10.1038/s41586-019-1118-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clavijo PE, Moore EC, Chen J, Davis RJ, Friedman J, Kim Y, Van Waes C, Chen Z, Allen CT (2017) Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8(34):55804–55820. https://doi.org/10.18632/oncotarget.18437

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sun L, Clavijo PE, Robbins Y, Patel P, Friedman J, Greene S, Das R, Silvin C, Van Waes C, Horn LA, Schlom J, Palena C, Maeda D, Zebala J, Allen CT (2019) Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight 4(7):e126853. https://doi.org/10.1172/jci.insight.126853

    Article  PubMed Central  Google Scholar 

  27. Orillion A, Hashimoto A, Damayanti N, Shen L, Adelaiye-Ogala R, Arisa S, Chintala S, Ordentlich P, Kao C, Elzey B, Gabrilovich D, Pili R (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res 23(17):5187–5201. https://doi.org/10.1158/1078-0432.CCR-17-0741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, Reiss K, Rodriguez PC (2014) Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 134(12):2853–2864. https://doi.org/10.1002/ijc.28622

    Article  CAS  PubMed  Google Scholar 

  29. Trillo-Tinoco J, Sierra RA, Mohamed E, Cao Y, de Mingo-Pulido A, Gilvary DL, Anadon CM, Costich TL, Wei S, Flores ER, Ruffell B, Conejo-Garcia JR, Rodriguez PC (2019) AMPK Alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cells. Cancer Res 79(19):5034–5047. https://doi.org/10.1158/0008-5472.CAN-19-0880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jacquelot N, Yamazaki T, Roberti MP, Duong CPM, Andrews MC, Verlingue L, Ferrere G, Becharef S, Vetizou M, Daillere R, Messaoudene M, Enot DP, Stoll G, Ugel S, Marigo I, Foong Ngiow S, Marabelle A, Prevost-Blondel A, Gaudreau PO, Gopalakrishnan V, Eggermont AM, Opolon P, Klein C, Madonna G, Ascierto PA, Sucker A, Schadendorf D, Smyth MJ, Soria JC, Kroemer G, Bronte V, Wargo J, Zitvogel L (2019) Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res 29(10):846–861. https://doi.org/10.1038/s41422-019-0224-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mensurado S, Rei M, Lanca T, Ioannou M, Goncalves-Sousa N, Kubo H, Malissen M, Papayannopoulos V, Serre K, Silva-Santos B (2018) Tumor-associated neutrophils suppress pro-tumoral IL-17+ gammadelta T cells through induction of oxidative stress. PLoS Biol 16(5):e2004990. https://doi.org/10.1371/journal.pbio.2004990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, Shibata T, Takami T (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83(5):1136–1144. https://doi.org/10.1189/jlb.0907611

    Article  CAS  PubMed  Google Scholar 

  33. Jian SL, Chen WW, Su YC, Su YW, Chuang TH, Hsu SC, Huang LR (2017) Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis. Cell Death Dis 8(5):e2779. https://doi.org/10.1038/cddis.2017.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by grants to Vincenzo Bronte: Cancer Research Institute (Clinic and Laboratory Integration Program, CLIP_2017), Euronanomed III (Joint Traslational Call_2017, Project Resolve), Cariverona Fondation (Project call, 2017), Qatar National Priority Research Program 2017 (Project: NPRP11S-1211-170086) and PRIN program of Italian Ministry of Education, University and Research (MIUR) (CUP: BRD19000260006); and to Stefano Ugel:.PRIN Program of Italian Ministry of Education, University and Research (MIUR) (CUP: B38D19000140006) and Associazione Italiana per la Ricerca sul Cancro (AIRC, Project: 21509).

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Bronte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barouni, R.M., Musiu, C., Bronte, V., Ugel, S., Canè, S. (2021). Phenotypical Characterization and Isolation of Tumor-Derived Mouse Myeloid-Derived Suppressor Cells. In: Brandau, S., Dorhoi, A. (eds) Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, vol 2236. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1060-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1060-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1059-6

  • Online ISBN: 978-1-0716-1060-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics