Skip to main content

Differentiation of Murine Myeloid-Derived Suppressor Cells

  • Chapter
  • First Online:
Myeloid-Derived Suppressor Cells and Cancer

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN))

  • 697 Accesses

Abstract

Myeloid-derived suppressor cells (MDSCs) are frequently defined as a heterogeneous population of immature cells belonging to the myeloid lineage which possess strong immunosuppressive activities. These cells ultimately derive from myeloid progenitors mainly present in the bone marrow that undergo a dysregulated differentiation pathway, ending up with the systemic mobilization of MDSCs of “monocytic” or “granulocytic” characteristics. Here we will review the current knowledge on MDSC differentiation mostly in murine cancer models, and reflect on whether MDSCs represent a unique, well-defined distinct myeloid lineage or just immature stages of myeloid cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11(11):762–774. doi:10.1038/nri3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, Feuerer M (2013) Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14(8):821–830. doi:10.1038/ni.2638

    Article  CAS  PubMed  Google Scholar 

  3. Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical versus Functional differentiation. Front Immunol 5:514. doi:10.3389/fimmu.2014.00514

    Article  PubMed  PubMed Central  Google Scholar 

  4. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104. doi:10.1016/j.immuni.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Epelman S, Lavine KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41(1):21–35. doi:10.1016/j.immuni.2014.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2(1):1. doi:10.1186/2050-7771-2-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. doi:10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Goncalves R, Mosser DM (2008) The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter 14: Unit 14 11. doi:10.1002/0471142735.im1401s83

  9. Breckpot K, Escors D (2009) Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification. Endocr Metab Immune Disord Drug Targets 9:328–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goold HD, Escors D, Conlan TJ, Chakraverty R, Bennett CL (2011) Conventional dendritic cells are required for the activation of helper-dependent CD8 T cell responses to a model antigen after cutaneous vaccination with lentiviral vectors. J Immunol 186(8):4565–4572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426. doi:10.1038/nature06175

    Article  CAS  PubMed  Google Scholar 

  13. Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K, Inaba K, Ohteki T (2013) A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38(5):943–957. doi:10.1016/j.immuni.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  14. Amanzada A, Malik IA, Nischwitz M, Sultan S, Naz N, Ramadori G (2011) Myeloperoxidase and elastase are only expressed by neutrophils in normal and in inflamed liver. Histochem Cell Biol 135(3):305–315. doi:10.1007/s00418-011-0787-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197. doi:10.1038/35004599

    Article  CAS  PubMed  Google Scholar 

  16. Nishikawa S, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9(9):725–729. doi:10.1038/nrm2466

    Article  CAS  PubMed  Google Scholar 

  17. Miyawaki K, Arinobu Y, Iwasaki H, Kohno K, Tsuzuki H, Lino T, Shima T, Kikushige Y, Takenaka K, Miyamoto T, Akashi K (2015) CD41 marks the initial myelo-erythroid lineage specification in adult mouse hematopoiesis: redefinition of murine common myeloid progenitor. Stem Cells (Dayton, Ohio) 33(3):976–987

    Google Scholar 

  18. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8(11):1207–1216. doi:10.1038/ni1518

    Article  CAS  PubMed  Google Scholar 

  19. Arce F, Rowe HM, Chain B, Lopes L, Collins MK (2009) Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol Ther 17(9):1643–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang ZF, Drumea K, Cormier J, Wang J, Zhu X, Rosmarin AG (2011) GABP transcription factor is required for myeloid differentiation, in part, throught its control of Gfi-1 expression. Blood 118(8):2243–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedman AD (2015) C/EBPalpha in normal and malignant myelopoiesis. Trans Int J Hematol 101(4):330–341

    Article  CAS  PubMed  Google Scholar 

  22. Hong S, Skaist AM, Wheelan SJ, Friedman AD (2011) AP-1 protein induction during monopoiesis favors C/EBP:AP-1 heterodimers over C/EBP homodimerization and stimulates FosB transcription. J Leukoc Biol 90(4):643–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamura T, Kurotaki D, Koizumi S (2015) Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 101(4):342–351

    Article  CAS  PubMed  Google Scholar 

  24. Geest CR, Buitenhuis M, Laarhoven AG, Bierings MB, Bruin MC, Vellenga E, Coffer PJ (2009) p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPalpha on serine 21. Stem Cells (Dayton, Ohio) 27(9):2271–2282

    Google Scholar 

  25. Barbosa CM, Bincoletto C, Barros CC, Ferreira AT, Paredes-Gamero EJ (2014) PLCgamma2 and PKC are important to myeloid lineage commitment triggered by M-SCF and G-CSF. J Cell Biochem 115(1):42–51

    Article  CAS  PubMed  Google Scholar 

  26. Hirai H, Yokota A, Tamura A, Sato A, Maekawa T (2015) Non-steady-state hematopoiesis is regulated by the C/EBPbeta transcription factor. Cancer Sci doi:10.1111/cas.12690

    Google Scholar 

  27. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32(6):790–802. doi:10.1016/j.immuni.2010.05.010 S1074-7613(10)00202-5 [pii]

  28. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev 13(10):739–752

    Article  CAS  Google Scholar 

  29. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi:10.1038/nri2506 nri2506 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lutz MB, Kukutsch NA, Menges M, Rossner S, Schuler G (2000) Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 30(4):1048–1052

    Article  CAS  PubMed  Google Scholar 

  32. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest 122(1):327–336. doi:10.1172/JCI57990 57990 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsiganov EN, Verbina EM, Radaeva TV, Sosunov VV, Kosmiadi GA, Nikitina IY, Lyadova IV (2014) Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol 192(10):4718–4727. doi:10.4049/jimmunol.1301365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67(1):425; author reply 426. doi:67/1/425 [pii] 10.1158/0008-5472.CAN-06-3037

  35. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123(1):39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R, Taylor PA, Panoskaltsis-Mortari A, Serody JS, Munn DH, Tolar J, Ochoa AC, Blazar BR (2010) Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116(25):5738–5747. doi:10.1182/blood-2010-06-287839 blood-2010-06-287839 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66(18):9290–9298

    Article  CAS  PubMed  Google Scholar 

  38. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67(7):2912–2915

    Article  CAS  PubMed  Google Scholar 

  39. Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2013) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118(20):5498–5505

    Article  Google Scholar 

  40. Li G, Wu K, Tao K, Lu X, Ma J, Mao Z, Li H, Shi L, Li J, Niu Y, Xiang F, Wang G (2015) Vasoactive intestinal peptide induces CD14 + HLA-DR-/low myeloid-derived suppressor cells in gastric cancer. Mol Med Rep 12(1):760–768

    CAS  PubMed  Google Scholar 

  41. Lim HX, Hong HJ, Cho D, Kim TS (2014) IL-18 enhances immunosuppressive responses by promoting differentiation into monocytic myeloid-derived suppressor cells. J Immunol 193(11):5453–5460

    Article  CAS  PubMed  Google Scholar 

  42. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40(1):22–35. doi:10.1002/eji.200939903

    Article  CAS  PubMed  Google Scholar 

  43. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131

    Article  CAS  PubMed  Google Scholar 

  44. Liechtenstein T, Perez-Janices N, Gato M, Caliendo F, Kochan G, Blanco-Luquin I, Van der Jeught K, Arce F, Guerrero-Setas D, Fernandez-Irigoyen J, Santamaria E, Breckpot K, Escors D (2014) A highly efficient tumor-infiltrating MDSC differentiation system for discovery of anti-neoplastic targets, which circumvents the need for tumor establishment in mice. Oncotarget 5(17):7843–7857

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liechtenstein TM (2015) Lentivector-based cancer immunotherapy silencing PD-L1 and modulating cytokine priming; development of ex vivo myeloid-derived suppressor cells to assess therapeutic efficacy. PhD thesis. University College London, London

    Google Scholar 

  46. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891

    Article  CAS  PubMed  Google Scholar 

  47. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207(11):2439–2453. doi:10.1084/jem.20100587 jem.20100587 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560. doi:10.1158/0008-5472.CAN-08-1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181. doi:10.1189/jlb.0311177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V, Hornq W, Fridlender G, Bayuh R, Worthen GS, Albelda SM (2012) Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myloid-derived suppressor cells and normal neutrophils. PLoS ONE 7(2):e31524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waight JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, Bogner PN, Farren MR, Lee KP, Liu K, Abrams SI (2013) Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis. J Clin Invest 123(10):4464–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koffel R, Meshcheryakova A, Warszawska J, Henning A, Wagner K, Jorgl A, Gubi D, Moser D, Hladik A, Hoffmann U, Fischer MB, van der Berg W, Koenders M, Scheinecker C, Gesslbauer B, Knapp S, Strobl H (2014) Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood 124(17):2713–2724

    Article  PubMed  PubMed Central  Google Scholar 

  53. Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, McCaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211–220. doi:10.1038/ni.2526 ni 2526 [pii]

Download references

Acknowledgments

David Escors is funded by a Miguel Servet Fellowship (CP12/03114), a FIS project grant (PI14/00579) from the Instituto de Salud Carlos III, Spain, the Refbio transpyrenaic collaborative project grants (NTBM), a Sandra Ibarra Foundation grant, Gobierno de Navarra Grant (BMED 033-2014), and a Gobierno Vasco BioEf project grant (BIO13/CI/014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escors .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Escors, D. (2016). Differentiation of Murine Myeloid-Derived Suppressor Cells. In: Myeloid-Derived Suppressor Cells and Cancer. SpringerBriefs in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-26821-7_2

Download citation

Publish with us

Policies and ethics