Skip to main content

The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances

  • Protocol
  • First Online:
Trichoderma reesei

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2234))

Abstract

A method based on reversed phase high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (RP-HPLC-ESI-HRMS) for the comprehensive and reliable detection of secondary metabolites of Trichoderma reesei cultured in synthetic minimal liquid medium is presented. A stable isotope-assisted (SIA) workflow is used, which allows the automated, comprehensive extraction of truly fungal metabolite-derived LC-MS signals from the acquired chromatographic data. The subsequent statistical data analysis and a typical outcome of such a metabolomics data evaluation are shown by way of example in a previously published study on the influence of the pleiotropic regulator transcription factor Xylanase promoter binding protein 1 (Xpp1) in T. reesei on secondary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner WB, Aldridge DC (1983) Fungal metabolites, vol2. Academic Press, London

    Google Scholar 

  2. Goyal S, Ramawat KG, Mérillon JM (2016) Different shades of fungal metabolites: an overview. Fungal Metabolites:1–29

    Google Scholar 

  3. Daley DK, Brown KJ, Badal S (2017) Fungal metabolites. Pharmacognosy:413–421

    Google Scholar 

  4. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    Article  CAS  PubMed  Google Scholar 

  6. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Crom SL, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12(4):R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947

    Article  CAS  PubMed  Google Scholar 

  8. Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma—chemistry meets genomics. Fungal Biol Rev 30(2):74–90

    Article  Google Scholar 

  9. Nielsen KF, Larsen TO (2015) The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 6:71

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22

    Article  CAS  PubMed  Google Scholar 

  11. Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76(6):1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. VanderMolen KM, Raja HA, El-Elimat T, Oberlies NH (2013) Evaluation of culture media for the production of secondary metabolites in a natural products screening program. AMB Express 3:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3(2):527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP (2013) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 genes, genomes. Genet 3(2):369–378

    CAS  Google Scholar 

  15. Derntl C, Kluger B, Bueschl C, Schuhmacher R, Mach RL, Mach-Aigner AR (2017) Transcription factor Xpp1 is a switch between primary and secondary fungal metabolism. Proc Natl Acad Sci U S A 114(4):E560–E569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodacre R (2005) Metabolomics—the way forward. Metabolomics 1(1):1

    Article  CAS  Google Scholar 

  17. Frisvad JC, Larsen TO, de Vries R, Meijer M, Houbraken J, Cabañes FJ, Ehrlich K, Samson RA (2007) Secondary metabolite profiling, growth profiles and other tools for species recognition and important Aspergillus mycotoxins. Stud Mycol 59:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thrane U, Anderson B, Frisvad JC, Smedsgaard J (2007) The exo-metabolome in filamentous fungi. Metabolomics 18:235–252

    Article  CAS  Google Scholar 

  19. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spec Rev 37(4):513–532

    Article  CAS  Google Scholar 

  22. Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spec Rev 24(5):613–646

    Article  CAS  Google Scholar 

  23. Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GA, Raftery D, Alahmari F, Jaremko L, Jaremko M (2019) Nmr spectroscopy for metabolomics research. Meta 9(7):123

    CAS  Google Scholar 

  24. Pasikanti KK, Ho PC, Chan ECY (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B 871(2):202–211

    Article  CAS  Google Scholar 

  25. Kluger B, Bueschl C, Lemmens M, Berthiller F, Häubl G, Jaunecker G, Adam G, Krska R, Schuhmacher R (2013) Stable isotopic labelling-assisted untargeted metabolic profiling reveals novel conjugates of the mycotoxin deoxynivalenol in wheat. Anal Bioanal Chem 405(15):5031–5036

    Article  CAS  PubMed  Google Scholar 

  26. Bueschl C, Krska R, Kluger B, Schuhmacher R (2013) Isotopic labeling-assisted metabolomics using LC-MS. Anal Bioanal Chem 405(1):27–33

    Article  CAS  PubMed  Google Scholar 

  27. Michener R, Lajtha K (2008) Stable isotopes in ecology and environmental science. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  28. Bueschl C, Kluger B, Berthiller F, Lirk G, Winkler S, Krska R, Schuhmacher R (2012) MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics 28(5):736–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bueschl C, Kluger B, Neumann NK, Doppler M, Maschietto V, Thallinger GG, Meng-Reiterer J, Krska R, Schuhmacher R (2017) MetExtract II: a software suite for stable isotope-assisted untargeted metabolomics. Anal Chem 89(17):9518–9526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang X, Chen Y-J, Cho K, Nikolskiy I, Crawford PA, Patti GJ (2014) X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal Chem 86(3):1632–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Capellades J, Navarro M, Samino S, Garcia-Ramirez M, Hernandez C, Simo R, Vinaixa M, Yanes O (2015) geoRge: a computational tool to detect the presence of stable isotope labeling in LC/MS-based untargeted metabolomics. Anal Chem 88(1):621–628

    Article  CAS  PubMed  Google Scholar 

  32. Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R (2012) mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29(2):281–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85(6):620–628

    Article  CAS  PubMed  Google Scholar 

  34. Godzien J, Gil de la Fuente A, Otero A, Barbas C (2018) Metabolite annotation and identification. Comprehensive Anal Chem:415–445

    Google Scholar 

  35. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotecchnol 30(10):918

    Article  CAS  Google Scholar 

  36. Bueschl C, Kluger B, Lemmens M, Adam G, Wiesenberger G, Maschietto V, Marocco A, Strauss J, Bödi S, Thallinger GG, Krska R, Schuhmacher R (2014) A novel stable isotope labelling assisted workflow for improved untargeted LC–HRMS based metabolomics research. Metabolomics 10(4):754–769

    Article  CAS  PubMed  Google Scholar 

  37. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  38. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat software 25(1):1–18

    Article  Google Scholar 

  39. Kassambara A, Mundt F (2017) Factoextra: extract and visualize the results of multivariate data analyses

    Google Scholar 

  40. Laatsch H (2012) AntiBase 2012 upgrade: the natural compound identifier

    Google Scholar 

  41. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Ann Rep Comput Chem 40:217–241

    Article  CAS  Google Scholar 

  42. Pence HE, Williams A (2010) ChemSpider:: an online chemical information resource. J Chem Edu 87(11):1123–1124

    Article  CAS  Google Scholar 

  43. Sansone S-A, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N (2007) The metabolomics standards initiative. Nat Biotechnol 25(8):846

    Article  CAS  PubMed  Google Scholar 

  44. Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta 8(2):31

    Google Scholar 

  45. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38(suppl_1):D750–D753

    Article  CAS  PubMed  Google Scholar 

  46. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3(7):557

    Article  CAS  PubMed  Google Scholar 

  47. Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y (2018) Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep 8(1):663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kapoore RV, Vaidyanathan S (2016) Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos Trans A Math Phys Eng Sci 374(2079):20150363

    PubMed  PubMed Central  Google Scholar 

  49. Wu Y, Li L (2016) Sample normalization methods in quantitative metabolomics. J Chromatogr A 1430:80–95

    Article  CAS  PubMed  Google Scholar 

  50. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16(4):299

    Article  CAS  PubMed  Google Scholar 

  51. Böcker S (2017) Searching molecular structure databases using tandem MS data: are we there yet? Curr Opin Chem Biol 36:1–6

    Article  CAS  PubMed  Google Scholar 

  52. Neumann NKN, Lehner SM, Kluger B, Bueschl C, Sedelmaier K, Lemmens M, Krska R, Schuhmacher R (2014) Automated LC-HRMS(/MS) approach for the annotation of fragment ions derived from stable isotope labeling-assisted untargeted metabolomics. Anal Chem 86(15):7320–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BØ, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34(8):828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen X, Wang R, Xiong X, Yin Y, Cai Y, Ma Z, Liu N, Zhu Z-J (2019) Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nat Commun 10(1):1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Christian Derntl, Astrid R. Mach-Aigner, Robert L. Mach, and Bernhard Kluger very much for providing the Xpp1 dataset, which has been used to exemplify data evaluation in this protocol. Further the financial support by the Austrian Science Fund (FWF project P 29556-B22) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schuhmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seidl, B., Bueschl, C., Schuhmacher, R. (2021). The Comprehensive and Reliable Detection of Secondary Metabolites in Trichoderma reesei: A Tool for the Discovery of Novel Substances. In: Mach-Aigner, A.R., Martzy, R. (eds) Trichoderma reesei. Methods in Molecular Biology, vol 2234. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1048-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1048-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1047-3

  • Online ISBN: 978-1-0716-1048-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics