Skip to main content

Analysis of Gene Expression Using lacZ Reporter Mouse Lines

  • Protocol
  • First Online:
Mouse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2224))

  • 2062 Accesses

Abstract

Reporter mice transgenically expressing the bacterial (E. coli) lacZ gene encoding β-galactosidase (β-gal, EC 3.2.1.23) are a versatile and extensively used tool to study gene expression and cell lineage patterns. Enzymatic activity of the β-gal reporter can be effectively visualized at cellular resolution either histochemically using 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) or by immunofluorescent detection using a β-gal-specific antibody. Here, we summarize protocols for the localization of β-gal expressing cells in whole embryos or organs as well as in histological tissue sections of lacZ reporter mice and discuss their limitations and common pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui C, Wani MA, Wight D et al (1994) Reporter genes in transgenic mice. Transgenic Res 3:182–194

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi E, Miyamoto N, Kajiwara N et al (2000) Expression analysis of Escherichia coli lacZ reporter gene in transgenic mice. Brain Res Brain Res Protoc 5:159–166

    Article  CAS  PubMed  Google Scholar 

  3. Burn SF (2012) Detection of beta-galactosidase activity: X-gal staining. Methods Mol Biol 886:241–250

    Article  CAS  PubMed  Google Scholar 

  4. Fowler AV, Zabin I (1978) Amino acid sequence of beta-galactosidase. XI Peptide ordering procedures and the complete sequence. J Biol Chem 253:5521–5525

    Article  CAS  PubMed  Google Scholar 

  5. Kalnins A, Otto K, Ruther U et al (1983) Sequence of the lacZ gene of Escherichia coli. EMBO J 2:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacobson RH, Zhang XJ, DuBose RF et al (1994) Three-dimensional structure of beta-galactosidase from E. coli. Nature 369:761–766

    Article  CAS  PubMed  Google Scholar 

  7. Juers DH, Matthews BW, Huber RE (2012) LacZ beta-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci 21:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Horwitz JP, Chua J, Curby RJ et al (1964) Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-beta-D-glycopyranosides. J Med Chem 7:574–575

    Google Scholar 

  9. Cotson S, Holt SJ (1958) Studies in enzyme cytochemistry. IV. Kinetics of aerial oxidation of indoxyl and some of its halogen derivatives. Proc R Soc Lond B Biol Sci 148:506–519

    Article  CAS  PubMed  Google Scholar 

  10. Pearson B, Wolf PL, Vazquez J (1963) A comparative study of a series of new indolyl compounds to localize beta-galactosidase in tissues. Lab Investig 12:1249–1259

    CAS  PubMed  Google Scholar 

  11. Lojda Z (1970) Indigogenic methods for glycosidases. II An improved method for beta-D-galactosidase and its application to localization studies of the enzymes in the intestine and in other tissues. Histochemie 23:266–288

    Article  CAS  PubMed  Google Scholar 

  12. Aguzzi A, Theuring F (1994) Improved in situ beta-galactosidase staining for histological analysis of transgenic mice. Histochemistry 102:477–481

    Article  CAS  PubMed  Google Scholar 

  13. Brunet LJ, McMahon JA, McMahon AP et al (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt A, Tief K, Foletti A et al (1998) lacZ transgenic mice to monitor gene expression in embryo and adult. Brain Res Brain Res Protoc 3:54–60

    Article  CAS  PubMed  Google Scholar 

  15. Kishigami S, Komatsu Y, Takeda H et al (2006) Optimized beta-galactosidase staining method for simultaneous detection of endogenous gene expression in early mouse embryos. Genesis 44:57–65

    Article  CAS  PubMed  Google Scholar 

  16. Altman FP (1976) Tetrazolium salts and formazans. Prog Histochem Cytochem 9:1–56

    Article  CAS  PubMed  Google Scholar 

  17. Gugliotta P, Pacchioni D, Bussolati G (1992) Staining reaction for beta-galactosidase in immunocytochemistry and in situ hybridization. Eur J Histochem 36:143–148

    CAS  PubMed  Google Scholar 

  18. Sundararajan S, Wakamiya M, Behringer RR et al (2012) A fast and sensitive alternative for beta-galactosidase detection in mouse embryos. Development 139:4484–4490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Trifonov S, Yamashita Y, Kase M et al (2016) Overview and assessment of the histochemical methods and reagents for the detection of beta-galactosidase activity in transgenic animals. Anat Sci Int 91:56–67

    Article  CAS  PubMed  Google Scholar 

  20. Nolan GP, Fiering S, Nicolas JF et al (1988) Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A 85:2603–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macgregor GR, Nolan GP, Fiering S et al (1991) Use of Escherichia coli (E. coli) lacZ (beta-galactosidase) as a reporter gene. Methods Mol Biol 7:217–235

    CAS  PubMed  Google Scholar 

  22. Zhang YZ, Naleway JJ, Larison KD et al (1991) Detecting lacZ gene expression in living cells with new lipophilic, fluorogenic beta-galactosidase substrates. FASEB J 5:3108–3113

    Article  CAS  PubMed  Google Scholar 

  23. Goring DR, Rossant J, Clapoff S et al (1987) In situ detection of beta-galactosidase in lenses of transgenic mice with a gamma-crystallin/lacZ gene. Science 235:456–458

    Article  CAS  PubMed  Google Scholar 

  24. Bonnerot C, Nicolas JF (1993) Application of LacZ gene fusions to postimplantation development. Methods Enzymol 225:451–469

    Article  CAS  PubMed  Google Scholar 

  25. Sekerkova G, Katarova Z, Joo F et al (1997) Visualization of beta-galactosidase by enzyme and immunohistochemistry in the olfactory bulb of transgenic mice carrying the LacZ transgene. J Histochem Cytochem 45:1147–1155

    Article  CAS  PubMed  Google Scholar 

  26. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  27. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  28. Petit AC, Legue E, Nicolas JF (2005) Methods in clonal analysis and applications. Reprod Nutr Dev 45:321–339

    Article  PubMed  Google Scholar 

  29. Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385

    Article  PubMed  Google Scholar 

  30. Watson CM, Trainor PA, Radziewic T et al (2008) Application of lacZ transgenic mice to cell lineage studies. Methods Mol Biol 461:149–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feil S, Krauss J, Thunemann M et al (2014) Genetic inducible fate mapping in adult mice using tamoxifen-dependent Cre recombinases. Methods Mol Biol 1194:113–139

    Article  PubMed  CAS  Google Scholar 

  32. Skarnes WC, Rosen B, West AP et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hall CV, Jacob PE, Ringold GM et al (1983) Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J Mol Appl Genet 2:101–109

    CAS  PubMed  Google Scholar 

  34. Callahan CA, Thomas JB (1994) Tau-beta-galactosidase, an axon-targeted fusion protein. Proc Natl Acad Sci U S A 91:5972–5976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mombaerts P, Wang F, Dulac C et al (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  36. Bonnerot C, Rocancourt D, Briand P et al (1987) A beta-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc Natl Acad Sci U S A 84:6795–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamamoto M, Shook NA, Kanisicak O et al (2009) A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  CAS  PubMed  Google Scholar 

  39. Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488

    Article  CAS  PubMed  Google Scholar 

  40. Cheng G, Thompson RP, Gourdie RG (1999) Improved detection reliability of beta-galactosidase in histological preparations. BioTechniques 27:438–440

    Article  CAS  PubMed  Google Scholar 

  41. Mahony D, Karunaratne S, Rothnagel JA (2002) Improved detection of lacZ reporter gene expression in transgenic epithelia by immunofluorescence microscopy. Exp Dermatol 11:153–158

    Article  CAS  PubMed  Google Scholar 

  42. Couffinhal T, Kearney M, Sullivan A et al (1997) Histochemical staining following LacZ gene transfer underestimates transfection efficiency. Hum Gene Ther 8:929–934

    Article  CAS  PubMed  Google Scholar 

  43. Dumoulin A, Ter-Avetisyan G, Schmidt H et al (2018) Molecular analysis of sensory axon branching unraveled a cGMP-dependent signaling cascade. Int J Mol Sci 19:1266

    Article  PubMed Central  CAS  Google Scholar 

  44. Ter-Avetisyan G, Rathjen FG, Schmidt H (2014) Bifurcation of axons from cranial sensory neurons is disabled in the absence of Npr2-induced cGMP signaling. J Neurosci 34:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Maria TK Zaldivia for critically reading the manuscript. This work was supported by the DFG (FOR 2060 project SCHM 2371/1) to HS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krämer, M.S., Feil, R., Schmidt, H. (2021). Analysis of Gene Expression Using lacZ Reporter Mouse Lines. In: Singh, S.R., Hoffman, R.M., Singh, A. (eds) Mouse Genetics . Methods in Molecular Biology, vol 2224. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1008-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1008-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1007-7

  • Online ISBN: 978-1-0716-1008-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics