Skip to main content

In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis

  • Protocol
  • First Online:
Developmental Biology of the Sea Urchin and Other Marine Invertebrates

Abstract

The Porifera are one of the best candidates as the sister group to all other metazoans. Studies on this phylum are therefore expected to shed light on the origin and early evolution of key animal features. Transcriptomic or genomic data acquired during the last 10 years have highlighted the conservation of most of the main genes and pathways involved in the development of the other metazoans. The next step is to determine how similar genetic tool boxes can result in widely dissimilar body plan organization, dynamics, and life histories. To answer these questions, three main axes of research are necessary: (1) conducting more gene expression studies; (2) developing knockdown protocols; and (3) reinterpreting sponge cell biology using modern tools. In this chapter we focus on the in situ hybridization (ISH) technique, needed to establish the spatiotemporal expression of genes, both on whole mount individuals and paraffin sections, and at different stages of development (adults, embryos, larvae, buds) of the homoscleromorph sponge Oscarella lobularis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renard E, Leys SP, Wörheide G, Borchiellini C (2018) Understanding animal evolution: the added value of sponge transcriptomics and genomics. BioEssays 40(9)

    Google Scholar 

  2. Alié A et al (2015) The ancestral gene repertoire of animal stem cells. Proc Natl Acad Sci U S A 112(51):E7093–E7100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gaiti F, Hatleberg WL, Tanurdžić M, Degnan BM (2018) Sponge long non-coding RNAs are expressed in specific cell types and conserved networks. Non-Coding RNA 4(1):6

    Article  PubMed Central  CAS  Google Scholar 

  4. Sebé-Pedrós A et al (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2(7):1176–1188

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hall C et al (2019) Secreted frizzled related protein is a target of PaxB and plays a role in aquiferous system development in the freshwater sponge, Ephydatia muelleri. PloS One 14(2):e0212005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP (2014) Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol 14:3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schippers KJ, Nichols SA, Wittkopp P (2018) Evidence of Signaling and Adhesion Roles for β-Catenin in the Sponge Ephydatia muelleri. Mol Biol Evol 35(6):1407–1421

    Article  CAS  PubMed  Google Scholar 

  8. Sogabe S, Nakanishi N, Degnan BM (2016) The ontogeny of choanocyte chambers during metamorphosis in the demosponge Amphimedon queenslandica. EvoDevo 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller PW et al (2018) Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution. J Biol Chem 293(30):11674–11686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caroline R, AmÕlie V, Laura F-C, Nina S, Sandrine C, Christian M, Emilie LG, Morgan D, CÕdric M, Florent M, Nicolas B, Dominique M-H, Alexander E, André LB, Carole B, Emmanuelle R (2020) The buds of Oscarella lobularis (Porifera): a new convenient model for sponge cell and developmental biology. bioRxiv. https://doi.org/10.1101/2020.06.23.167296

  11. Rivera A et al (2013) The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev 15(3):186–196

    Article  CAS  PubMed  Google Scholar 

  12. Rivera AS et al (2011) RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria. BMC Biotechnol 11:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schenkelaars Q et al (2016) ROCK inhibition abolishes the establishment of the aquiferous system in Ephydatia muelleri (Porifera, Demospongiae). Dev Biol 412(2):298–310

    Article  CAS  PubMed  Google Scholar 

  14. Windsor Reid PJ, Matveev E, McClymont A, Posfai D, Hill AL, Leys SP (2018) Wnt signaling and polarity in freshwater sponges. BMC Evol Biol 18(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lapébie P et al (2009) WNT/beta-catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella. PloS One 4(6):e5823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64(2):600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bouvier T, Del Giorgio PA (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol Ecol 44(1):3–15

    Article  CAS  PubMed  Google Scholar 

  18. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68(6):3094–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adell T, Nefkens I, Müller WEG (2003) Polarity factor “Frizzled” in the demosponge Suberites domuncula: identification, expression and localization of the receptor in the epithelium/pinacoderm(1). FEBS Lett 554(3):363–368

    Article  CAS  PubMed  Google Scholar 

  20. Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134(3):461–470

    Article  Google Scholar 

  21. Adamska M et al (2010) Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518

    Article  CAS  PubMed  Google Scholar 

  22. Adamska M et al (2007) Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PloS One 2(10):e1031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Larroux C, Luke GN, Koopman P, Rokhsar DS, Shimeld SM, Degnan BM (2008) Genesis and expansion of metazoan transcription factor gene classes. Mol Biol Evol 25(5):980–996

    Article  CAS  PubMed  Google Scholar 

  24. Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM (2008) Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol 18(15):1156–1161

    Article  CAS  PubMed  Google Scholar 

  25. Richards GS, Degnan BM (2012) The expression of Delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. EvoDevo 3(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borisenko I, Adamski M, Ereskovsky A, Adamska M (2016) Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol Biol 16(1):123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Fortunato S et al (2012) Genome-wide analysis of the sox family in the calcareous sponge Sycon ciliatum: multiple genes with unique expression patterns. EvoDevo 3:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fortunato SAV, Vervoort M, Adamski M, Adamska M (2016) Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 7:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Fortunato SAV, Adamski M, Adamska M (2015) Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 24(Pt 2):121–129

    Article  PubMed  Google Scholar 

  30. Fortunato SAV et al (2014) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514(7524):620–623

    Article  CAS  PubMed  Google Scholar 

  31. Leininger S et al (2014) Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun 5:ncomms4905

    Article  CAS  Google Scholar 

  32. Voigt O, Adamska M, Adamski M, Kittelmann A, Wencker L, Wörheide G (2017) Spicule formation in calcareous sponges: coordinated expression of biomineralization genes and spicule-type specific genes. Sci Rep 7:45658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fierro-Constaín L et al (2017) The conservation of the germline multipotency program, from sponges to vertebrates: a stepping stone to understanding the somatic and germline origins. Genome Biol Evol 9(3):474–488

    PubMed  PubMed Central  Google Scholar 

  34. Gazave E et al (2008) NK homeobox genes with choanocyte-specific expression in homoscleromorph sponges. Dev Genes Evol 218(9):479–489

    Article  CAS  PubMed  Google Scholar 

  35. Renard E et al (2013) Porifera (sponges): recent knowledge and new perspectives. In: Encyclopedia of life sciences

    Google Scholar 

  36. Ereskovsky AV et al (2009) The Homoscleromorph sponge Oscarella lobularis, a promising sponge model in evolutionary and developmental biology. BioEssays 31(1):89–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carole Borchiellini or Emmanuelle Renard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fierro-Constaín, L. et al. (2021). In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis. In: Carroll, D.J., Stricker, S.A. (eds) Developmental Biology of the Sea Urchin and Other Marine Invertebrates. Methods in Molecular Biology, vol 2219. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0974-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0974-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0973-6

  • Online ISBN: 978-1-0716-0974-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics