Skip to main content

Ex Vivo Culture for Preimplantation Mouse Embryo to Analyze Pluripotency

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

Abstract

A couple of days after fertilization of a mouse oocyte by a sperm, two sequential cell differentiation events segregate pluripotent cells that can be identified by the presence of specific markers. Early mammalian embryos are relatively easy to recover as they are not yet implanted in the uterus matrix. Several decades of experimentation have enabled to find appropriate media to culture them, and therefore provide an excellent way to test different experimental setups such as the use of signaling inhibitors. We provide here a commonly used protocol to culture preimplantation embryos as well as a method to detect pluripotent cells in blastocysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitten WK (1956) Culture of tubal mouse ova. Nature 177:96. https://doi.org/10.1038/177096a0

    Article  PubMed  CAS  Google Scholar 

  2. McLAREN A, Biggers JD (1958) Successful development and birth of mice cultivated in vitro as early as early embryos. Nature 182:877–878. https://doi.org/10.1038/182877a0

    Article  PubMed  CAS  Google Scholar 

  3. Nagy A (2003) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  4. Lawitts JA, Biggers JD (1993) Culture of preimplantation embryos. Meth Enzymol 225:153–164. https://doi.org/10.1016/0076-6879(93)25012-q

    Article  PubMed  CAS  Google Scholar 

  5. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM (1995) Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 41:232–238. https://doi.org/10.1002/mrd.1080410214

    Article  PubMed  CAS  Google Scholar 

  6. Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128:301–311. https://doi.org/10.1530/rep.1.00297

    Article  PubMed  CAS  Google Scholar 

  7. Morbeck DE, Krisher RL, Herrick JR et al (2014) Composition of commercial media used for human embryo culture. Fertil Steril 102:759–766.e9. https://doi.org/10.1016/j.fertnstert.2014.05.043

    Article  PubMed  CAS  Google Scholar 

  8. Morbeck DE, Baumann NA, Oglesbee D (2017) Composition of single-step media used for human embryo culture. Fertil Steril 107:1055–1060.e1. https://doi.org/10.1016/j.fertnstert.2017.01.007

    Article  PubMed  Google Scholar 

  9. Biggers JD, Summers MC (2008) Choosing a culture medium: making informed choices. Fertil Steril 90:473–483. https://doi.org/10.1016/j.fertnstert.2008.08.010

    Article  PubMed  Google Scholar 

  10. Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Reproduction 99:673–679. https://doi.org/10.1530/jrf.0.0990673

    Article  CAS  Google Scholar 

  11. Orsi NM, Leese HJ (2001) Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev 59:44–53. https://doi.org/10.1002/mrd.1006

    Article  PubMed  CAS  Google Scholar 

  12. Feuer S, Liu X, Donjacour A et al (2016) Transcriptional signatures throughout development: the effects of mouse embryo manipulation in vitro. Reproduction 153:107. https://doi.org/10.1530/REP-16-0473

    Article  Google Scholar 

  13. Rossant J (2018) Genetic control of early cell lineages in the mammalian embryo. Annu Rev Genet 52:185–201. https://doi.org/10.1146/annurev-genet-120116-024544

    Article  PubMed  CAS  Google Scholar 

  14. Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624. https://doi.org/10.1016/j.devcel.2006.02.020

    Article  PubMed  CAS  Google Scholar 

  15. Plusa B, Piliszek A, Frankenberg S et al (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091. https://doi.org/10.1242/dev.021519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Boroviak T, Loos R, Bertone P et al (2014) The ability of inner cell mass cells to self-renew as embryonic stem cells is acquired upon epiblast specification. Nat Cell Biol 16:516–528. https://doi.org/10.1038/ncb2965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Harvey AJ, Rathjen J, Gardner DK (2016) Metaboloepigenetic regulation of pluripotent stem cells. Stem Cells Int 2016:1816525. https://doi.org/10.1155/2016/1816525

    Google Scholar 

  18. Kaneko KJ, DePamphilis ML (2013) TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–3690. https://doi.org/10.1242/dev.093799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Saiz N, Williams KM, Seshan VE, Hadjantonakis A-K (2016) Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst. Nat Commun 7:13463. https://doi.org/10.1038/ncomms13463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bessonnard S, De Mot L, Gonze D et al (2014) Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141:3637–3648. https://doi.org/10.1242/dev.109678

    Article  PubMed  CAS  Google Scholar 

  21. Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724. https://doi.org/10.1242/dev.043471

    Article  PubMed  CAS  Google Scholar 

  22. Artus J, Piliszek A, Hadjantonakis A-K (2011) The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 350:393–404. https://doi.org/10.1016/j.ydbio.2010.12.007

    Article  PubMed  CAS  Google Scholar 

  23. Chambers I, Colby D, Robertson M et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655. https://doi.org/10.1016/s0092-8674(03)00392-1

    Article  PubMed  CAS  Google Scholar 

  24. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315

    Article  PubMed  CAS  Google Scholar 

  25. Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-Seq reveals dynamic, random Monoallelic gene expression in mammalian cells. Science 343:193–196. https://doi.org/10.1126/science.1245316

    Article  PubMed  CAS  Google Scholar 

  26. Posfai E, Petropoulos S, de Barros FRO et al (2017) Position- and hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6:e22906. https://doi.org/10.7554/eLife.22906

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allègre N, Chauveau S, Dennis C et al (2019) A Nanog-dependent gene cluster initiates the specification of the pluripotent epiblast. bioRxiv 707679. https://doi.org/10.1101/707679

  28. Ohnishi Y, Huber W, Tsumura A et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37. https://doi.org/10.1038/ncb2881

    Article  PubMed  CAS  Google Scholar 

  29. Kelley RL, Gardner DK (2019) Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and post-implantation development. Reprod Biomed Online 39:3–18. https://doi.org/10.1016/j.rbmo.2019.03.102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Chazaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boutourlinsky, K., Allègre, N., Chazaud, C. (2021). Ex Vivo Culture for Preimplantation Mouse Embryo to Analyze Pluripotency. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics