Skip to main content

Application and Analysis of Biomedical Imaging Technology in Early Diagnosis of Breast Cancer

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Breast cancer is the primary malignant tumor that endangers women’s health. The incidence of breast cancer is increasing rapidly in recent years. Accurate disease evaluation before treatment is the key to the selection of treatment options. Biomedical imaging technology plays an irreplaceable role in the diagnosis and staging of tumors. Various imaging methods can provide excellent temporal and spatial resolution from multiple levels and perspectives and have become one of the most commonly used means of breast cancer early detection. With the development of radiomics, it has been found that early imaging diagnosis of breast cancer plays an important guiding role in clinical decision-making. The purpose of this study is to explore the characteristics of various breast cancer imaging technologies, promote the development of individualized accurate diagnosis and treatment of imaging, and improve the clinical application value of radiomics in the early diagnosis of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jerome-D’Emilia B, Suplee P, Kushary D (2019) A 10-year evaluation of New Jersey’s national breast and cervical cancer early detection program: comparison of stage at diagnosis in enrollees and nonenrollees. J Women’s Health 29(2):230–236

    Google Scholar 

  2. Klijn JG (2010) Early diagnosis of hereditary breast cancer by magnetic resonance imaging: what is realistic? J Clin Oncol 28:1441–1445

    PubMed  Google Scholar 

  3. Milosevic M, Jankovic D, Milenkovic A, Stojanov D (2018) Early diagnosis and detection of breast cancer. Technol Health Care 26:729–759

    PubMed  Google Scholar 

  4. Tseshkovskii MS, Labetskii II (1986) Radiographic methods of breast imaging in the early diagnosis of cancer. Med Radiol 31:66–70

    CAS  Google Scholar 

  5. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT et al (2019) Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 30:1674

    CAS  PubMed  Google Scholar 

  6. Fouladi N, Pourfarzi F, Daneshian A, Alimohammadi S (2018) Mediating factors in early diagnosis of breast cancer: from initial changes in health to breast cancer detection. Asian Pac J Cancer Prev 19:2751–2755

    PubMed  PubMed Central  Google Scholar 

  7. Bulut A, Bulut A (2017) Knowledge, attitudes and behaviors of primary health care nurses and midwives in breast cancer early diagnosis applications. Breast Cancer 9:163–169

    PubMed  Google Scholar 

  8. Capelan M, Battisti NML, McLoughlin A, Maidens V, Snuggs N, Slyk P et al (2017) The prevalence of unmet needs in 625 women living beyond a diagnosis of early breast cancer. Br J Cancer 117:1113–1120

    PubMed  PubMed Central  Google Scholar 

  9. Jacobs MA, Wolff AC, Macura KJ, Stearns V, Ouwerkerk R, El Khouli R et al (2015) Multiparametric and multimodality functional radiological imaging for breast cancer diagnosis and early treatment response assessment. J Natl Cancer Inst Monogr 2015:40–46

    PubMed  PubMed Central  Google Scholar 

  10. Scherer E, Seifert J (1971) Mammography as a method for early diagnosis of female breast cancer. Experiences with a screening test in 7380 apparently healthy women. Dtsch Med Wochenschr 96:1207–1210

    CAS  PubMed  Google Scholar 

  11. Allweis TM, Nissan A, Spira RM, Sklair-Levy M, Freund HR, Peretz T (2003) Screening mammography for early diagnosis of breast cancer: facts, controversies, and the implementation in Israel. Harefuah 142:281–286. 317

    PubMed  Google Scholar 

  12. Kujiraoka Y, Murakami A (2006) Diagnosis of early stage of breast cancer by mammography. Nihon Rinsho Jap J Clin Med 64:486–490

    Google Scholar 

  13. Gutnik LA, Castro MC (2016) Does spatial access to mammography have an effect on early stage of breast cancer diagnosis? A county-level analysis for New York State. Breast J 22:127–130

    PubMed  Google Scholar 

  14. Lacombe J, Mange A, Bougnoux AC, Prassas I, Solassol J (2014) A multiparametric serum marker panel as a complementary test to mammography for the diagnosis of node-negative early-stage breast cancer and DCIS in young women. Cancer Epidemiol Biomark Prev 23:1834–1842

    Google Scholar 

  15. Nergiz-Eroglu U, Kilic D (2011) Knowledge, attitude and beliefs women attending mammography units have regarding breast cancer and early diagnosis. Asian Pac J Cancer Prev 12:1855–1860

    CAS  PubMed  Google Scholar 

  16. Salih A, Webb WM, Bates T (1999) Does open-access mammography and ultrasound delay the diagnosis of breast cancer? Breast 8:129–132

    CAS  PubMed  Google Scholar 

  17. Simmons R (2004) Ultrasound in the changing approaches to breast cancer diagnosis and treatment. Breast J 10(Suppl 10):S13–S14

    PubMed  Google Scholar 

  18. Tohno E, Ueno E (2005) Ultrasound (US) diagnosis of nonpalpable breast cancer. Breast Cancer 12:267–271

    PubMed  Google Scholar 

  19. Carlsen J, Ewertsen C, Sletting S, Vejborg I, Schafer FK, Cosgrove D et al (2015) Ultrasound elastography in breast cancer diagnosis. Ultraschall Med 36:550–562. quiz 63-5

    CAS  PubMed  Google Scholar 

  20. Moon WK, Huang YS, Lo CM, Huang CS, Bae MS, Kim WH et al (2015) Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features. Med Phys 42:3024–3035

    PubMed  Google Scholar 

  21. Zhang YN, Wang CJ, Xu Y, Zhu QL, Zhou YD, Zhang J et al (2015) Sensitivity, specificity and accuracy of ultrasound in diagnosis of breast cancer metastasis to the axillary lymph nodes in chinese patients. Ultrasound Med Biol 41:1835–1841

    PubMed  Google Scholar 

  22. Polat AV, Ozturk M, Polat AK, Karabacak U, Bekci T, Murat N (2019) Efficacy of ultrasound and shear wave elastography for the diagnosis of breast cancer-related lymphedema. J Ultrasound Med 39(4):795–803

    PubMed  Google Scholar 

  23. Tozaki M (2008) Diagnosis of breast cancer: MDCT versus MRI. Breast Cancer 15:205–211

    PubMed  Google Scholar 

  24. Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378:1804–1811

    PubMed  Google Scholar 

  25. Kawashima H, Inokuchi M, Furukawa H, Kitamura S (2012) Accuracy for a diagnosis of breast cancer spread using 3.0T MRI. Nihon Rinsho Jap J Clin Med 70(Suppl 7):306–308

    Google Scholar 

  26. Banaie M, Soltanian-Zadeh H, Saligheh-Rad HR, Gity M (2018) Spatiotemporal features of DCE-MRI for breast cancer diagnosis. Comput Methods Prog Biomed 155:153–164

    Google Scholar 

  27. Brix G, Henze M, Knopp MV, Lucht R, Doll J, Junkermann H et al (2001) Comparison of pharmacokinetic MRI and [18F] fluorodeoxyglucose PET in the diagnosis of breast cancer: initial experience. Eur Radiol 11:2058–2070

    CAS  PubMed  Google Scholar 

  28. Leithner D, Horvat JV, Bernard-Davila B, Helbich TH, Ochoa-Albiztegui RE, Martinez DF et al (2019) A multiparametric [(18)F]FDG PET/MRI diagnostic model including imaging biomarkers of the tumor and contralateral healthy breast tissue aids breast cancer diagnosis. Eur J Nucl Med Mol Imaging 46:1878–1888

    PubMed  PubMed Central  Google Scholar 

  29. Markel AL, Vainer BG (2005) Infrared thermography in diagnosis of breast cancer (review of foreign literature). Terapevticheskii Arkhiv 77:57–61

    CAS  PubMed  Google Scholar 

  30. Agostini V, Delsanto S, Molinari F, Knaflitz M (2006) Evaluation of feature-based registration in dynamic infrared imaging for breast cancer diagnosis. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference 1:953–956

    Google Scholar 

  31. Ooi GJ, Fox J, Siu K, Lewis R, Bambery KR, McNaughton D et al (2008) Fourier transform infrared imaging and small angle x-ray scattering as a combined biomolecular approach to diagnosis of breast cancer. Med Phys 35:2151–2161

    CAS  PubMed  Google Scholar 

  32. Khanmohammadi M, Rajabi FH, Garmarudi AB, Mohammadzadeh R, Mohammadzadeh R (2010) Chemometrics assisted investigation of variations in infrared spectra of blood samples obtained from women with breast cancer: a new approach for cancer diagnosis. Eur J Cancer Care 19:352–359

    CAS  Google Scholar 

  33. Vreugdenburg TD, Willis CD, Mundy L, Hiller JE (2013) A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat 137:665–676

    PubMed  Google Scholar 

  34. Gerasimova E, Audit B, Roux SG, Khalil A, Gileva O, Argoul F et al (2014) Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis. Front Physiol 5:176

    PubMed  PubMed Central  Google Scholar 

  35. Han F, Shi G, Liang C, Wang L, Li K (2015) A simple and efficient method for breast cancer diagnosis based on infrared thermal imaging. Cell Biochem Biophys 71:491–498

    CAS  PubMed  Google Scholar 

  36. Arora N, Martins D, Ruggerio D, Tousimis E, Swistel AJ, Osborne MP et al (2008) Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg 196:523–526

    PubMed  Google Scholar 

  37. Kosus N, Kosus A, Duran M, Simavli S, Turhan N (2010) Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening. J Turkish German Gynecol Assoc 11:152–157

    Google Scholar 

  38. Athanasiou A, Vanel D, Balleyguier C, Fournier L, Mathieu MC, Delaloge S et al (2005) Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results. Eur J Radiol 54:72–79

    PubMed  Google Scholar 

  39. Fournier LS, Vanel D, Athanasiou A, Gatzemeier W, Masuykov IV, Padhani AR et al (2009) Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels. Eur J Radiol 69:43–49

    PubMed  Google Scholar 

  40. Cerussi AE, Tanamai VW, Mehta RS, Hsiang D, Butler J, Tromberg BJ (2010) Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient. Acad Radiol 17:1031–1039

    PubMed  PubMed Central  Google Scholar 

  41. Flexman ML, Khalil MA, Al Abdi R, Kim HK, Fong CJ, Desperito E et al (2011) Digital optical tomography system for dynamic breast imaging. J Biomed Opt 16:076014

    PubMed  PubMed Central  Google Scholar 

  42. Sajjadi AY, Isakoff SJ, Deng B, Singh B, Wanyo CM, Fang Q et al (2017) Normalization of compression-induced hemodynamics in patients responding to neoadjuvant chemotherapy monitored by dynamic tomographic optical breast imaging (DTOBI). Biomed Opt Express 8:555–569

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zimmermann BB, Deng B, Singh B, Martino M, Selb J, Fang Q et al (2017) Multimodal breast cancer imaging using coregistered dynamic diffuse optical tomography and digital breast tomosynthesis. J Biomed Opt 22:46008

    PubMed  Google Scholar 

  44. Vaupel P, Fortmeyer HP, Runkel S, Kallinowski F (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res 47:3496–3503

    CAS  PubMed  Google Scholar 

  45. Vaupel P, Mayer A, Briest S, Hockel M (2005) Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion. Adv Exp Med Biol 566:333–342

    PubMed  Google Scholar 

  46. Zalev J, Richards LM, Clingman BA, Harris J, Cantu E, Menezes GLG et al (2019) Opto-acoustic imaging of relative blood oxygen saturation and total hemoglobin for breast cancer diagnosis. J Biomed Opt 24:1–16

    PubMed  Google Scholar 

  47. Abe K, Zhao L, Periasamy A, Intes X, Barroso M (2013) Non-invasive in vivo imaging of near infrared-labeled transferrin in breast cancer cells and tumors using fluorescence lifetime FRET. PLoS One 8:e80269

    PubMed  PubMed Central  Google Scholar 

  48. Verbeek FP, Troyan SL, Mieog JS, Liefers GJ, Moffitt LA, Rosenberg M et al (2014) Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res Treat 143:333–342

    PubMed  Google Scholar 

  49. Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J et al (2015) Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep 5:14197

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Abbaci M, Conversano A, De Leeuw F, Laplace-Builhe C, Mazouni C (2019) Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: a systematic review. Eur J Surg 45:1778–1786

    Google Scholar 

  51. Bhattacharyya K, Goldschmidt BS, Viator JA (2016) Detection and capture of breast cancer cells with photoacoustic flow cytometry. J Biomed Opt 21:87007

    PubMed  Google Scholar 

  52. Wong TTW, Zhang R, Hai P, Zhang C, Pleitez MA, Aft RL et al (2017) Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci Adv 3:e1602168

    PubMed  PubMed Central  Google Scholar 

  53. Yamaga I, Kawaguchi-Sakita N, Asao Y, Matsumoto Y, Yoshikawa A, Fukui T et al (2018) Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer. Photo-Dermatology 11:6–13

    Google Scholar 

  54. Nyayapathi N, Xia J (2019) Photoacoustic imaging of breast cancer: a mini review of system design and image features. J Biomed Opt 24:1–13

    PubMed  Google Scholar 

  55. Yao D, Wang Y, Zou R, Bian K, Liu P, Shen S et al (2020) Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl Mater Interfaces 12(4):4276–4284

    CAS  PubMed  Google Scholar 

  56. Yu FH, Wang JX, Ye XH, Deng J, Hang J, Yang B (2019) Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer. Eur J Radiol 119:108658

    PubMed  Google Scholar 

  57. Granzier RWY, van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI (2019) Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review. Eur J Radiol 121:108736

    CAS  PubMed  Google Scholar 

  58. Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M et al (2019) Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer. JAMA Netw Open 2:e192561

    PubMed  PubMed Central  Google Scholar 

  59. Antunovic L, De Sanctis R, Cozzi L, Kirienko M, Sagona A, Torrisi R et al (2019) PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 46:1468–1477

    PubMed  Google Scholar 

  60. Acar E, Turgut B, Yigit S, Kaya G (2019) Comparison of the volumetric and radiomics findings of 18F-FDG PET/CT images with immunohistochemical prognostic factors in local/locally advanced breast cancer. Nucl Med Commun 40:764–772

    CAS  PubMed  Google Scholar 

  61. Lee SE, Han K, Kwak JY, Lee E, Kim EK (2018) Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep 8:13546

    PubMed  PubMed Central  Google Scholar 

  62. Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M (2018) A new challenge for radiologists: radiomics in breast cancer. Biomed Res Int 2018:6120703

    PubMed  PubMed Central  Google Scholar 

  63. Park H, Lim Y, Ko ES, Cho HH, Lee JE, Han BK et al (2018) Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer. Clin Cancer Res 24:4705–4714

    PubMed  Google Scholar 

  64. Saha A, Yu X, Sahoo D, Mazurowski MA (2017) Effects of MRI scanner parameters on breast cancer radiomics. Expert Syst Appl 87:384–391

    PubMed  PubMed Central  Google Scholar 

  65. Drukker K, Edwards A, Doyle C, Papaioannou J, Kulkarni K, Giger ML (2019) Breast MRI radiomics for the pretreatment prediction of response to neoadjuvant chemotherapy in node-positive breast cancer patients. J Med Imaging 6:034502

    Google Scholar 

  66. Marino MA, Pinker K, Leithner D, Sung J, Avendano D, Morris EA et al (2019) Contrast-enhanced mammography and radiomics analysis for noninvasive breast cancer characterization: initial results. Mol Imaging Biol:1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, L., Jiang, N., Wu, Y. (2020). Application and Analysis of Biomedical Imaging Technology in Early Diagnosis of Breast Cancer. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics