Skip to main content

Advertisement

Log in

Breast MRI: Clinical Indications, Recommendations, and Future Applications in Breast Cancer Diagnosis

  • BREAST CANCER (ME GATTI-MAYS, SECTION EDITOR)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article aims to provide an updated overview of the indications for diagnostic breast magnetic resonance imaging (MRI), discusses the available and novel imaging exams proposed for breast cancer detection, and discusses considerations when performing breast MRI in the clinical setting.

Recent Findings

Breast MRI is superior in identifying lesions in women with a very high risk of breast cancer or average risk with dense breasts. Moreover, the application of breast MRI has benefits in numerous other clinical cases as well; e.g., the assessment of the extent of disease, evaluation of response to neoadjuvant therapy (NAT), evaluation of lymph nodes and primary occult tumor, evaluation of lesions suspicious of Paget’s disease, and suspicious discharge and breast implants.

Summary

Breast cancer is the most frequently detected tumor among women around the globe and is often diagnosed as a result of abnormal findings on mammography. Although effective multimodal therapies significantly decline mortality rates, breast cancer remains one of the leading causes of cancer death. A proactive approach to identifying suspicious breast lesions at early stages can enhance the efficacy of anti-cancer treatments, improve patient recovery, and significantly improve long-term survival. However, the currently applied mammography to detect breast cancer has its limitations. High false-positive and false-negative rates are observed in women with dense breasts. Since approximately half of the screening population comprises women with dense breasts, mammography is often incorrectly used. The application of breast MRI should significantly impact the correct cases of breast abnormality detection in women. Radiomics provides valuable data obtained from breast MRI, further improving breast cancer diagnosis. Introducing these constantly evolving algorithms in clinical practice will lead to the right breast detection tool, optimized surveillance program, and individualized breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.

    Article  PubMed  Google Scholar 

  3. Phi XA, Saadatmand S, De Bock GH, Warner E, Sardanelli F, Leach MO, et al. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis. Br J Cancer. 2016;114(6):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  5. • Lameijer JRC, Voogd AC, Pijnappel RM, Setz-Pels W, Broeders MJ, Tjan-Heijnen VCG, et al. Delayed breast cancer diagnosis after repeated recall at biennial screening mammography: an observational follow-up study from the Netherlands. Br J Cancer. 2020;123(2):325–32. (This study describes the delay in breast cancer diagnosis after abnormal tissue detection by mammography)

  6. • Clift AK, Dodwell D, Lord S, Petrou S, Brady SM, Collins GS, et al. The current status of risk-stratified breast screening. Br J Cancer. 2022;126(4):533–50. (This article highlights the importance of risk-stratified breast cancer detection with alteration in imaging strategies)

    Article  PubMed  Google Scholar 

  7. Martaindale SR. Breast MR imaging: atlas of anatomy, physiology, pathophysiology, and breast imaging reporting and data systems Lexicon. Magn Reson Imaging Clin N Am. 2018;26(2):179–90.

    Article  PubMed  Google Scholar 

  8. Duncan AM, Al Youha S, Joukhadar N, Konder R, Stecco C, Wheelock ME. Anatomy of the breast fascial system: a systematic review of the literature. Plast Reconstr Surg. 2022;149(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  9. Tanis PJ, Nieweg OE, Valdés Olmos RA, Kroon BB. Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy. J Am Coll Surg. 2001;192(3):399–409.

    Article  CAS  PubMed  Google Scholar 

  10. Waldman RA, Finch J, Grant-Kels JM, Stevenson C, Whitaker-Worth D. Skin diseases of the breast and nipple: benign and malignant tumors. J Am Acad Dermatol. 2019;80(6):1467–81.

    Article  PubMed  Google Scholar 

  11. Teichgraeber DC, Guirguis MS, Whitman GJ. Breast Cancer Staging: Updates in the. AJR Am J Roentgenol. 2021;217(2):278–90.

    Article  PubMed  Google Scholar 

  12. Lee CI, Chen LE, Elmore JG. Risk-based breast cancer screening: implications of breast density. Med Clin North Am. 2017;101(4):725–41.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hooley RJ. Breast density legislation and clinical evidence. Radiol Clin North Am. 2017;55(3):513–26.

    Article  PubMed  Google Scholar 

  14. Nass SJ, Davidson NE. The biology of breast cancer. Hematol Oncol Clin North Am. 1999;13(2):311–32.

    Article  CAS  PubMed  Google Scholar 

  15. Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med. 2022;28(4):666–77.

    Article  CAS  PubMed  Google Scholar 

  16. Moreno G, Molina M, Wu R, Sullivan JR, Jorns JM. Unveiling the histopathologic spectrum of MRI-guided breast biopsies: an institutional pathological-radiological correlation. Breast Cancer Res Treat. 2021;187(3):673–80.

    Article  PubMed  Google Scholar 

  17. Baltzer P, Mann RM, Iima M, Sigmund EE, Clauser P, Gilbert FJ, et al. Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol. 2020;30(3):1436–50.

    Article  PubMed  Google Scholar 

  18. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet. 2021;397(10286):1750–69.

    Article  CAS  PubMed  Google Scholar 

  19. Cherian S, Vagvala S, Majidi SS, Deitch SG, Dykstra DS, Sullivan JR, et al. Enhancing foci on breast MRI: identifying criteria that increase levels of suspicion. Clin Imaging. 2022;84:104–9.

    Article  PubMed  Google Scholar 

  20. Saleem M, Ghazali MB, Wahab MAMA, Yusoff NM, Mahsin H, Seng CE, et al. The BRCA1 and BRCA2 Genes in Early-Onset Breast Cancer Patients. Adv Exp Med Biol. 2020;1292:1–12.

    CAS  PubMed  Google Scholar 

  21. Peng M, Yang D, Hou Y, Liu S, Zhao M, Qin Y, et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis. 2019;10(3):228.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleiblova P, Stolarova L, Krizova K, Lhota F, Hojny J, Zemankova P, et al. Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int J Cancer. 2019;145(7):1782–97.

    CAS  PubMed  Google Scholar 

  23. Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12(2):144–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, et al. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol. 2020;10:301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shahbandi A, Nguyen HD, Jackson JG. TP53 mutations and outcomes in breast cancer: reading beyond the headlines. Trends Cancer. 2020;6(2):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aristokli N, Polycarpou I, Themistocleous SC, Sophocleous D, Mamais I. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient’s history: a review. Radiography (Lond). 2022;28(3):848–56.

    Article  CAS  PubMed  Google Scholar 

  27. Shahan CL, Layne GP. Advances in Breast Imaging with Current Screening Recommendations and Controversies. Obstet Gynecol Clin North Am. 2022;49(1):1–33.

    Article  PubMed  Google Scholar 

  28. Wang L. Early Diagnosis of Breast Cancer. Sensors (Basel). 2017;17(7).

  29. Deike-Hofmann K, Koenig F, Paech D, Dreher C, Delorme S, Schlemmer HP, et al. Abbreviated MRI Protocols in Breast Cancer Diagnostics. J Magn Reson Imaging. 2019;49(3):647–58.

    Article  PubMed  Google Scholar 

  30. Sogani J, Mango VL, Keating D, Sung JS, Jochelson MS. Contrast-enhanced mammography: past, present, and future. Clin Imaging. 2021;69:269–79.

    Article  PubMed  Google Scholar 

  31. Scaranelo AM. What’s hot in breast MRI. Can Assoc Radiol J. 2022;73(1):125–40.

    Article  PubMed  Google Scholar 

  32. Hodler J, Kubik-Huch RA, von Schulthess GK. Diseases of the chest, breast, heart and vessels 2019–2022: diagnostic and interventional imaging. 2019.

  33. • Galati F, Moffa G, Pediconi F. Breast imaging: beyond the detection. Eur J Radiol. 2022;146: 110051. (This article reports how to counterbalance the current limitations of MRI)

    Article  PubMed  Google Scholar 

  34. Jochelson MS, Lobbes MBI. Contrast-enhanced mammography: state of the art. Radiology. 2021;299(1):36–48.

    Article  PubMed  Google Scholar 

  35. Neeter LMFH, Raat HPJF, Alcantara R, Robbe Q, Smidt ML, Wildberger JE, et al. Contrast-enhanced mammography: what the radiologist needs to know. BJR Open. 2021;3(1):20210034.

    PubMed  PubMed Central  Google Scholar 

  36. •• Vourtsis A, Berg WA. Breast density implications and supplemental screening. Eur Radiol. 2019;29(4):1762–77. (This article highlights the increased efficacy of breast MRI in detecting breast cancer in women with dense breasts and describes suggestions to increase the accessibility of MRI)

    Article  PubMed  Google Scholar 

  37. • Greenwood HI, Wilmes LJ, Kelil T, Joe BN. Role of breast MRI in the evaluation and detection of DCIS: opportunities and challenges. J Magn Reson Imaging. 2020;52(3):697–709. (This article describes the importance of breast MRI in the superior detection of invasive breast cancer)

    Article  PubMed  Google Scholar 

  38. •• Network NCC. Breast Cancer Screening and Diagnosis. 2022. (This organization describes evidence-based guidelines for breast cancer screening, diagnosis, and surveillance)

  39. Milon A, Wahab CA, Kermarrec E, Bekhouche A, Taourel P, Thomassin-Naggara I. Breast MRI: Is Faster Better? AJR Am J Roentgenol. 2020;214(2):282–95.

    Article  PubMed  Google Scholar 

  40. Leithner D, Moy L, Morris EA, Marino MA, Helbich TH, Pinker K. Abbreviated MRI of the breast: does it provide value? J Magn Reson Imaging. 2019;49(7):e85–100.

    Article  PubMed  Google Scholar 

  41. Mann RM, Cho N, Moy L. Breast MRI: State of the Art. Radiology. 2019;292(3):520–36.

    Article  PubMed  Google Scholar 

  42. Heller SL, Moy L. MRI breast screening revisited. J Magn Reson Imaging. 2019;49(5):1212–21.

    Article  PubMed  Google Scholar 

  43. Meyer HJ, Martin M, Denecke T. DWI of the breast - possibilities and limitations. Rofo. 2022.

  44. Nissan N, Allweis T, Menes T, Brodsky A, Paluch-Shimon S, Haas I, et al. Breast MRI during lactation: effects on tumor conspicuity using dynamic contrast-enhanced (DCE) in comparison with diffusion tensor imaging (DTI) parametric maps. Eur Radiol. 2020;30(2):767–77.

    Article  PubMed  Google Scholar 

  45. Greenwood HI. Abbreviated protocol breast MRI: the past, present, and future. Clin Imaging. 2019;53:169–73.

    Article  PubMed  Google Scholar 

  46. Leithner D, Wengert GJ, Helbich TH, Thakur S, Ochoa-Albiztegui RE, Morris EA, et al. Clinical role of breast MRI now and going forward. Clin Radiol. 2018;73(8):700–14.

    Article  CAS  PubMed  Google Scholar 

  47. Destounis S. Breast magnetic resonance imaging indications. Top Magn Reson Imaging. 2014;23(6):329–36.

    Article  PubMed  Google Scholar 

  48. Bartram A, Gilbert F, Thompson A, Mann GB, Agrawal A. Breast MRI in DCIS size estimation, breast-conserving surgery and oncoplastic breast surgery. Cancer Treat Rev. 2021;94:102158.

    Article  PubMed  Google Scholar 

  49. Greenwood HI, Freimanis RI, Carpentier BM, Joe BN. Clinical breast magnetic resonance imaging: technique, indications, and future applications. Semin Ultrasound CT MR. 2018;39(1):45–59.

    Article  PubMed  Google Scholar 

  50. Mann RM, Loo CE, Wobbes T, Bult P, Barentsz JO, Gilhuijs KG, et al. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat. 2010;119(2):415–22.

    Article  CAS  PubMed  Google Scholar 

  51. Van Baelen K, Geukens T, Maetens M, Tjan-Heijnen V, Lord CJ, Linn S, et al. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol. 2022;33(8):769–85.

    Article  PubMed  Google Scholar 

  52. Dołęga-Kozierowski B, Lis M, Marszalska-Jacak H, Koziej M, Celer M, Bandyk M, et al. Multimodality imaging in lobular breast cancer: differences in mammography, ultrasound, and MRI in the assessment of local tumor extent and correlation with molecular characteristics. Front Oncol. 2022;12:855519.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hovis KK, Lee JM, Hippe DS, Linden H, Flanagan MR, Kilgore MR, et al. Accuracy of preoperative breast MRI versus conventional imaging in measuring pathologic extent of invasive lobular carcinoma. J Breast Imaging. 2021;3(3):288–98.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Amornsiripanitch N, Lam DL, Rahbar H. Advances in breast MRI in the setting of ductal carcinoma in situ. Semin Roentgenol. 2018;53(4):261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yuen S, Monzawa S, Gose A, Yanai S, Yata Y, Matsumoto H, et al. Impact of background parenchymal enhancement levels on the diagnosis of contrast-enhanced digital mammography in evaluations of breast cancer: comparison with contrast-enhanced breast MRI. Breast Cancer. 2022;29(4):677–87.

    Article  PubMed  Google Scholar 

  56. Radiology ACo. ACR Manual on Contrast Media. 2022.

  57. Fakhry S, Kamal RM, Tohamey YM, Kamal EF. Unilateral primary breast edema: Can T2-weighted images meet the diagnostic challenge? : Egypt J Radiol Nucl Med; 2022.

  58. Nahabedian MY, Hammer J. Use of magnetic resonance imaging in patients with breast tissue expanders. Plast Reconstr Surg. 2022;150(5):963–8.

    Article  CAS  PubMed  Google Scholar 

  59. Porcu M, Solinas C, Mannelli L, Micheletti G, Lambertini M, Willard-Gallo K, et al. Radiomics and “radi-…omics” in cancer immunotherapy: a guide for clinicians. Crit Rev Oncol Hematol. 2020;154:103068.

    Article  PubMed  Google Scholar 

  60. Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C, Pinker K. AI-enhanced breast imaging: where are we and where are we heading? Eur J Radiol. 2021;142:109882.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol. 2021;72:238–50.

    Article  CAS  PubMed  Google Scholar 

  62. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast. 2020;49:74–80.

    Article  PubMed  Google Scholar 

  63. Xu N, Zhou J, He X, Ye S, Miao H, Liu H, et al. Radiomics model for evaluating the level of tumor-infiltrating lymphocytes in breast cancer based on dynamic contrast-enhanced MRI. Clin Breast Cancer. 2021;21(5):440-9.e1.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. David Gray for assistance in writing in English.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper: Demi Wekking drafted the manuscript. Michele Porcu wrote a part of the manuscript and prepared the MRI figure. Cinzia Solinas supervised the entire process. All authors reviewed the manuscript, gave intellectual input to the finalization of the manuscript, and approved the final version of the manuscript for submission.

Corresponding authors

Correspondence to Demi Wekking or Cinzia Solinas.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Breast Cancer.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wekking, D., Porcu, M., De Silva, P. et al. Breast MRI: Clinical Indications, Recommendations, and Future Applications in Breast Cancer Diagnosis. Curr Oncol Rep 25, 257–267 (2023). https://doi.org/10.1007/s11912-023-01372-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01372-x

Keywords

Navigation