Skip to main content

Precision Medicine and Dilated Cardiomyopathy

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

As the most common cardiomyopathy, dilated cardiomyopathy (DCM) is currently defined as a heart muscle disease which is characterized by left ventricular (LV) or biventricular dilation and systolic dysfunction at the exclusion of either pressure or volume overload or severe coronary artery disease sufficient to explain the dysfunction. For established DCM patients, treatment is directed at the major clinical manifestations of heart failure and arrhythmias, including pharmacological treatment, device therapies, and heart transplantation. But this traditional strategy is incompletely effective and untenable for the consistently high morbidity and mortality of DCM. Implementation of precision medicine in the field of DCM is expected to greatly improve the prognosis of patients and reduce the cost by shifting the current focus on disease treatment to prevention and individualized treatment. This chapter intends to summarize the progress of accurate medical diagnosis and treatment of dilated heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276. https://doi.org/10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  2. Weintraub RG, Semsarian C, Macdonald P (2017) Dilated cardiomyopathy. Lancet (London, England) 390(10092):400–414. https://doi.org/10.1016/s0140-6736(16)31713-5

    Article  CAS  Google Scholar 

  3. Fatkin D, Huttner IG, Kovacic JC, Seidman JG, Seidman CE (2019) Precision medicine in the management of dilated cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 74(23):2921–2938. https://doi.org/10.1016/j.jacc.2019.10.011

    Article  PubMed  Google Scholar 

  4. Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van Eyk J, Srinivas PR (2015) Transformative impact of proteomics on cardiovascular health and disease: a scientific statement from the American Heart Association. Circulation 132(9):852–872. https://doi.org/10.1161/cir.0000000000000226

    Article  CAS  PubMed  Google Scholar 

  5. Shah SH, Newgard CB (2015) Integrated metabolomics and genomics: systems approaches to biomarkers and mechanisms of cardiovascular disease. Circ Cardiovasc Genet 8(2):410–419. https://doi.org/10.1161/circgenetics.114.000223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wende AR (2016) Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 10(1):25–38. https://doi.org/10.1002/prca.201500052

    Article  CAS  PubMed  Google Scholar 

  7. Fox CS, Hall JL, Arnett DK, Ashley EA, Delles C, Engler MB, Freeman MW, Johnson JA, Lanfear DE, Liggett SB, Lusis AJ, Loscalzo J, MacRae CA, Musunuru K, Newby LK, O’Donnell CJ, Rich SS, Terzic A (2015) Future translational applications from the contemporary genomics era: a scientific statement from the American Heart Association. Circulation 131(19):1715–1736. https://doi.org/10.1161/cir.0000000000000211

    Article  PubMed  PubMed Central  Google Scholar 

  8. Natarajan P, O’Donnell CJ (2016) Reducing cardiovascular risk using genomic information in the era of precision medicine. Circulation 133(12):1155–1159. https://doi.org/10.1161/circulationaha.116.021765

    Article  PubMed  PubMed Central  Google Scholar 

  9. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. https://doi.org/10.1056/NEJMp1500523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siva N (2015) UK gears up to decode 100,000 genomes from NHS patients. Lancet (London, England) 385(9963):103–104. https://doi.org/10.1016/s0140-6736(14)62453-3

    Article  Google Scholar 

  11. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC (2013) Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 369(1):11–19. https://doi.org/10.1056/NEJMoa1215340

    Article  CAS  PubMed  Google Scholar 

  12. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE (2016) A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science (New York, NY) 351(6273):617–621. https://doi.org/10.1126/science.aad3456

    Article  CAS  Google Scholar 

  13. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Wang X, Ge J, Zhao L, Hu D, Liu L, Hou FF (2015) Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA 313(13):1325–1335. https://doi.org/10.1001/jama.2015.2274

    Article  CAS  PubMed  Google Scholar 

  14. de Gonzalo-Calvo D, Quezada M, Campuzano O, Perez-Serra A, Broncano J, Ayala R, Ramos M, Llorente-Cortes V, Blasco-Turrión S, Morales FJ, Gonzalez P, Brugada R, Mangas A, Toro R (2017) Familial dilated cardiomyopathy: a multidisciplinary entity, from basic screening to novel circulating biomarkers. Int J Cardiol 228:870–880. https://doi.org/10.1016/j.ijcard.2016.11.045

    Article  PubMed  Google Scholar 

  15. Petretta M, Pirozzi F, Sasso L, Paglia A, Bonaduce D (2011) Review and metaanalysis of the frequency of familial dilated cardiomyopathy. Am J Cardiol 108(8):1171–1176. https://doi.org/10.1016/j.amjcard.2011.06.022

    Article  PubMed  Google Scholar 

  16. Hershberger RE, Siegfried JD (2011) Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 57(16):1641–1649. https://doi.org/10.1016/j.jacc.2011.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628. https://doi.org/10.1056/NEJMoa1110186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voelkel T, Linke WA (2011) Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Archiv 462(1):143–154. https://doi.org/10.1007/s00424-011-0938-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tharp CA, Haywood ME, Sbaizero O, Taylor MRG, Mestroni L (2019) The giant protein titin’s role in cardiomyopathy: genetic, transcriptional, and post-translational modifications of TTN and their contribution to cardiac disease. Front Physiol 10:1436. https://doi.org/10.3389/fphys.2019.01436

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beqqali A, Bollen IA, Rasmussen TB, van den Hoogenhof MM, van Deutekom HW, Schafer S, Haas J, Meder B, Sørensen KE, van Oort RJ, Mogensen J, Hubner N, Creemers EE, van der Velden J, Pinto YM (2016) A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism. Cardiovasc Res 112(1):452–463. https://doi.org/10.1093/cvr/cvw192

    Article  CAS  PubMed  Google Scholar 

  21. Gerull B, Gramlich M, Atherton J, McNabb M, Trombitás K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, Frenneaux M, Thierfelder L (2002) Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 30(2):201–204. https://doi.org/10.1038/ng815

    Article  CAS  PubMed  Google Scholar 

  22. Chauveau C, Rowell J, Ferreiro A (2014) A rising titan: TTN review and mutation update. Hum Mutat 35(9):1046–1059. https://doi.org/10.1002/humu.22611

    Article  CAS  PubMed  Google Scholar 

  23. Wells QS, Becker JR, Su YR, Mosley JD, Weeke P, D’Aoust L, Ausborn NL, Ramirez AH, Pfotenhauer JP, Naftilan AJ, Markham L, Exil V, Roden DM, Hong CC (2013) Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet 6(4):317–326. https://doi.org/10.1161/circgenetics.113.000011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo W, Zhu C, Yin Z, Wang Q, Sun M, Cao H, Greaser ML (2018) Splicing factor RBM20 regulates transcriptional network of titin associated and calcium handling genes in the heart. Int J Biol Sci 14(4):369–380. https://doi.org/10.7150/ijbs.24117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellinor PT, Sasse-Klaassen S, Probst S, Gerull B, Shin JT, Toeppel A, Heuser A, Michely B, Yoerger DM, Song BS, Pilz B, Krings G, Coplin B, Lange PE, Dec GW, Hennies HC, Thierfelder L, MacRae CA (2006) A novel locus for dilated cardiomyopathy, diffuse myocardial fibrosis, and sudden death on chromosome 10q25-26. J Am Coll Cardiol 48(1):106–111. https://doi.org/10.1016/j.jacc.2006.01.079

    Article  CAS  PubMed  Google Scholar 

  26. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V, Vakeel P, Klaassen S, Gerull B, Thierfelder L, Regitz-Zagrosek V, Hacker TA, Saupe KW, Dec GW, Ellinor PT, MacRae CA, Spallek B, Fischer R, Perrot A, Özcelik C, Saar K, Hubner N, Gotthardt M (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773. https://doi.org/10.1038/nm.2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S, Guo W, Dewey CN, Greaser ML (2013) Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res 41(4):2659–2672. https://doi.org/10.1093/nar/gks1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pérez-Serra A, Toro R, Sarquella-Brugada G, de Gonzalo-Calvo D, Cesar S, Carro E, Llorente-Cortes V, Iglesias A, Brugada J, Brugada R, Campuzano O (2016) Genetic basis of dilated cardiomyopathy. Int J Cardiol 224:461–472. https://doi.org/10.1016/j.ijcard.2016.09.068

    Article  PubMed  Google Scholar 

  29. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MRG, Vatta M, Ware SM (2018) Genetic evaluation of cardiomyopathy-A Heart Failure Society of America Practice Guideline. J Card Fail 24(5):281–302. https://doi.org/10.1016/j.cardfail.2018.03.004

    Article  PubMed  Google Scholar 

  30. Kumar S, Baldinger SH, Gandjbakhch E, Maury P, Sellal JM, Androulakis AF, Waintraub X, Charron P, Rollin A, Richard P, Stevenson WG, Macintyre CJ, Ho CY, Thompson T, Vohra JK, Kalman JM, Zeppenfeld K, Sacher F, Tedrow UB, Lakdawala NK (2016) Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol 68(21):2299–2307. https://doi.org/10.1016/j.jacc.2016.08.058

    Article  CAS  PubMed  Google Scholar 

  31. Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Müehle G, Johnson W, McDonough B (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341(23):1715–1724. https://doi.org/10.1056/nejm199912023412302

    Article  CAS  PubMed  Google Scholar 

  32. Chandar S, Yeo LS, Leimena C, Tan JC, Xiao XH, Nikolova-Krstevski V, Yasuoka Y, Gardiner-Garden M, Wu J, Kesteven S, Karlsdotter L, Natarajan S, Carlton A, Rainer S, Feneley MP, Fatkin D (2010) Effects of mechanical stress and carvedilol in lamin A/C-deficient dilated cardiomyopathy. Circ Res 106(3):573–582. https://doi.org/10.1161/circresaha.109.204388

    Article  CAS  PubMed  Google Scholar 

  33. Yeoh T, Hayward C, Benson V, Sheu A, Richmond Z, Feneley MP, Keogh AM, Macdonald P, Fatkin D (2011) A randomised, placebo-controlled trial of carvedilol in early familial dilated cardiomyopathy. Heart Lung Circ 20(9):566–573. https://doi.org/10.1016/j.hlc.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  34. Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, La Gerche A, Niebauer J, Pressler A, Schmied CM, Serratosa L, Halle M, Van Buuren F, Borjesson M, Carrè F, Panhuyzen-Goedkoop NM, Heidbuchel H, Olivotto I, Corrado D, Sinagra G, Sharma S (2019) Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J 40(1):19–33. https://doi.org/10.1093/eurheartj/ehy730

    Article  PubMed  Google Scholar 

  35. Mann SA, Castro ML, Ohanian M, Guo G, Zodgekar P, Sheu A, Stockhammer K, Thompson T, Playford D, Subbiah R, Kuchar D, Aggarwal A, Vandenberg JI, Fatkin D (2012) R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol 60(16):1566–1573. https://doi.org/10.1016/j.jacc.2012.05.050

    Article  CAS  PubMed  Google Scholar 

  36. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, Slavov D, Zhu X, Caldwell JH, Mestroni L (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57(21):2160–2168. https://doi.org/10.1016/j.jacc.2010.09.084

    Article  PubMed  Google Scholar 

  37. Laurent G, Saal S, Amarouch MY, Béziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Mérot J, Turpault R, Coudière Y, Charpentier F, Schott JJ, Loussouarn G, Wilde AA, Wolf JE, Baró I, Kyndt F, Probst V (2012) Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol 60(2):144–156. https://doi.org/10.1016/j.jacc.2012.02.052

    Article  PubMed  Google Scholar 

  38. Zakrzewska-Koperska J, Franaszczyk M, Bilińska Z, Truszkowska G, Karczmarz M, Szumowski Ł, Zieliński T, Płoski R, Bilińska M (2018) Rapid and effective response of the R222Q SCN5A to quinidine treatment in a patient with Purkinje-related ventricular arrhythmia and familial dilated cardiomyopathy: a case report. BMC Med Genet 19(1):94. https://doi.org/10.1186/s12881-018-0599-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–1109. https://doi.org/10.1093/europace/eur245

    Article  PubMed  Google Scholar 

  40. van der Weyden L, White JK, Adams DJ, Logan DW (2011) The mouse genetics toolkit: revealing function and mechanism. Genome Biol 12(6):224. https://doi.org/10.1186/gb-2011-12-6-224

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huttner IG, Wang LW, Santiago CF, Horvat C, Johnson R, Cheng D, von Frieling-Salewsky M, Hillcoat K, Bemand TJ, Trivedi G, Braet F, Hesselson D, Alford K, Hayward CS, Seidman JG, Seidman CE, Feneley MP, Linke WA, Fatkin D (2018) A-band titin truncation in zebrafish causes dilated cardiomyopathy and hemodynamic stress intolerance. Circ Genom Precis Med 11(8):e002135. https://doi.org/10.1161/circgen.118.002135

    Article  CAS  PubMed  Google Scholar 

  42. Shi X, Chen R, Zhang Y, Yun J, Brand-Arzamendi K, Liu X, Wen XY (2018) Zebrafish heart failure models: opportunities and challenges. Amino Acids 50(7):787–798. https://doi.org/10.1007/s00726-018-2578-7

    Article  CAS  PubMed  Google Scholar 

  43. Wilkinson RN, Jopling C, van Eeden FJ (2014) Zebrafish as a model of cardiac disease. Prog Mol Biol Transl Sci 124:65–91. https://doi.org/10.1016/b978-0-12-386930-2.00004-5

    Article  CAS  PubMed  Google Scholar 

  44. Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91(2):279–288. https://doi.org/10.1093/cvr/cvr098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartlett HL, Escalera RB 2nd, Patel SS, Wedemeyer EW, Volk KA, Lohr JL, Reinking BE (2010) Echocardiographic assessment of cardiac morphology and function in Xenopus. Comp Med 60(2):107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69(8):1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012

    Article  PubMed  Google Scholar 

  47. Potter E, Marwick TH (2018) Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. J Am Coll Cardiol Img 11(2 Pt 1):260–274. https://doi.org/10.1016/j.jcmg.2017.11.017

    Article  Google Scholar 

  48. van der Bijl P, Bootsma M, Hiemstra YL, Ajmone Marsan N, Bax JJ, Delgado V (2019) Left ventricular 2D speckle tracking echocardiography for detection of systolic dysfunction in genetic, dilated cardiomyopathies. Eur Heart J Cardiovasc Imaging 20(6):694–699. https://doi.org/10.1093/ehjci/jey169

    Article  PubMed  Google Scholar 

  49. Verdonschot JAJ, Merken JJ, Brunner-La Rocca HP, Hazebroek MR, Eurlings C, Thijssen E, Wang P, Weerts J, van Empel V, Schummers G, Schreckenberg M, van den Wijngaard A, Lumens J, Brunner HG, Heymans SRB, Krapels IPC, Knackstedt C (2020) Value of speckle tracking-based deformation analysis in screening relatives of patients with asymptomatic dilated cardiomyopathy. J Am Coll Cardiol Img 13(2 Pt 2):549–558. https://doi.org/10.1016/j.jcmg.2019.02.032

    Article  Google Scholar 

  50. Dorsheimer L, Assmus B, Rasper T, Ortmann CA, Ecke A, Abou-El-Ardat K, Schmid T, Brüne B, Wagner S, Serve H, Hoffmann J, Seeger F, Dimmeler S, Zeiher AM, Rieger MA (2019) Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4(1):25–33. https://doi.org/10.1001/jamacardio.2018.3965

    Article  PubMed  Google Scholar 

  51. Goldfeder RL, Priest JR, Zook JM, Grove ME, Waggott D, Wheeler MT, Salit M, Ashley EA (2016) Medical implications of technical accuracy in genome sequencing. Genome Med 8(1):24. https://doi.org/10.1186/s13073-016-0269-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Lepe MP, O’Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Mägi R, Stanton A, Connell J, Bakker SJ, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton-Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JM, Tobin MD, Munroe PB, Ehret GB, Wain LV (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49(3):403–415. https://doi.org/10.1038/ng.3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liddicoat J, Skopek JM, Liddell K (2017) Precision medicine: legal and ethical challenges. University of Cambridge Faculty of Law Research Paper No 64/2017. doi:https://doi.org/10.2139/ssrn.3070388

  54. Joyner MJ, Paneth N (2015) Seven Questions for Personalized Medicine. JAMA 314(10):999–1000. https://doi.org/10.1001/jama.2015.7725

    Article  CAS  PubMed  Google Scholar 

  55. Bolli R, Ghafghazi S (2015) Current status of cell therapy for non-ischaemic cardiomyopathy: a brief overview. Eur Heart J 36(42):2905–2908. https://doi.org/10.1093/eurheartj/ehv454

    Article  PubMed  Google Scholar 

  56. Martino H, Brofman P, Greco O, Bueno R, Bodanese L, Clausell N, Maldonado JA, Mill J, Braile D, Moraes J Jr, Silva S, Bozza A, Santos B, Campos de Carvalho A (2015) Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). Eur Heart J 36(42):2898–2904. https://doi.org/10.1093/eurheartj/ehv477

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, X., Zhu, W. (2020). Precision Medicine and Dilated Cardiomyopathy. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics