Skip to main content

Unified Analysis of Multiple ChIP-Seq Datasets

  • Protocol
  • First Online:
DNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2198))

Abstract

High-throughput sequencing technologies are increasingly used in molecular cell biology to assess genome-wide chromatin dynamics of proteins bound to DNA, through techniques such as chromatin immunoprecipitation sequencing (ChIP-seq). These techniques often rely on an analysis strategy based on identifying genomic regions with increased sequencing signal to infer the binding location or chemical modifications of proteins bound to DNA. Peak calling within individual samples has been well described, however relatively little attention has been devoted to the merging of replicate samples, and the cross-comparison of many samples. Here, we present a generalized strategy to enable the unification of ChIP-seq datasets, enabling enhanced cross-comparison of binding patterns. The strategy works by merging peak data between different (even unrelated) samples, and then using a local background to recalculate enrichment. This strategy redefines the peaks within each experiment, allowing for more accurate cross-comparison of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD, Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS, Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh KH, Feizi S, Karlic R, Kim AR, Kulkarni A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P, Sallari RC, Siebenthall KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJ, Li W, Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai LH, Wang W, Waterland RA, Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–330. https://doi.org/10.1038/nature14248

    Article  CAS  Google Scholar 

  2. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. https://doi.org/10.1038/nature06008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4(8):613–614. https://doi.org/10.1038/nmeth0807-613

    Article  CAS  PubMed  Google Scholar 

  4. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  5. Friedman N, Rando OJ (2015) Epigenomics and the structure of the living genome. Genome Res 25(10):1482–1490. https://doi.org/10.1101/gr.190165.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55. https://doi.org/10.1016/j.cell.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  7. Fu X, He F, Li Y, Shahveranov A, Hutchins AP (2017) Genomic and molecular control of cell type and cell type conversions. Cell Regen (Lond) 6:1–7. https://doi.org/10.1016/j.cr.2017.09.001

    Article  CAS  Google Scholar 

  8. Zhuang Q, Li W, Benda C, Huang Z, Ahmed T, Liu P, Guo X, Ibanez DP, Luo Z, Zhang M, Abdul MM, Yang Z, Yang J, Huang Y, Zhang H, Huang D, Zhou J, Zhong X, Zhu X, Fu X, Fan W, Liu Y, Xu Y, Ward C, Khan MJ, Kanwal S, Mirza B, Tortorella MD, Tse HF, Chen J, Qin B, Bao X, Gao S, Hutchins AP, Esteban MA (2018) NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nat Cell Biol 20(4):400–412. https://doi.org/10.1038/s41556-018-0047-x

    Article  CAS  PubMed  Google Scholar 

  9. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152(3):642–654. https://doi.org/10.1016/j.cell.2012.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang S, Mortazavi A (2018) Integrating ChIP-seq with other functional genomics data. Brief Funct Genomics 17(2):104–115. https://doi.org/10.1093/bfgp/ely002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwok CK, Tang Y, Assmann SM, Bevilacqua PC (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40(4):221–232

    Article  CAS  PubMed  Google Scholar 

  12. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651

    Article  CAS  PubMed  Google Scholar 

  13. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36(16):5221–5231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brdlik CM, Niu W, Snyder M (2014) Chapter seven—chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis Elegans. Methods Enzymol 539:89

    Article  CAS  PubMed  Google Scholar 

  15. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. https://doi.org/10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  16. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ (2015) Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res 25(11):1757–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Muller F, Forrest ARR, Carninci P, Rehli M, Sandelin A (2014) An atlas of active enhancers across human cell types and tissues. Nature 507(7493):455–461. https://doi.org/10.1038/nature12787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692. https://doi.org/10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ge K (2014) Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods Mol Biol 1150:97–111

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass KC (2010) Simple combinations of lineage-determining transcription factors prime -regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruczyk M, Umer HM, Enroth S, Komorowski J (2013) Peak finder Metaserver - a novel application for finding peaks in ChIP-seq data. BMC Bioinformatics 14(1):1–7

    Article  Google Scholar 

  23. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed  PubMed Central  Google Scholar 

  24. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15(11):709–721. https://doi.org/10.1038/nrg3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435. https://doi.org/10.1038/nature09380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin JW, Wang G (2014) The mediator complex: a master coordinator of transcription and cell lineage development. Development 141(5):977–987. https://doi.org/10.1242/dev.098392

    Article  CAS  PubMed  Google Scholar 

  27. Li D, Liu J, Yang X, Zhou C, Guo J, Wu C, Qin Y, Guo L, He J, Yu S, Liu H, Wang X, Wu F, Kuang J, Hutchins AP, Chen J, Pei D (2017) Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21(6):819–833. e816. https://doi.org/10.1016/j.stem.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  28. Shao Z, Zhang Y, Yuan GC, Orkin SH, Waxman DJ (2012) MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol 13(3):R16. https://doi.org/10.1186/gb-2012-13-3-r16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen K, Chen Z, Wu D, Zhang L, Lin X, Su J, Rodriguez B, Xi Y, Xia Z, Chen X, Shi X, Wang Q, Li W (2015) Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat Genet 47(10):1149–1157. https://doi.org/10.1038/ng.3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saleem MM, Mendoza-Parra MA, Cholley PE, Blum M, Gronemeyer H (2017) Epimetheus - a multi-profile normalizer for epigenomic sequencing data. BMC Bioinformatics 18(1):259. https://doi.org/10.1186/s12859-017-1655-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allhoff M, Sere K, FP J, Zenke M, GC I (2016) Differential peak calling of ChIP-seq signals with replicates with THOR. Nucleic Acids Res 44(20):e153. https://doi.org/10.1093/nar/gkw680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heinig M, Colome-Tatche M, Taudt A, Rintisch C, Schafer S, Pravenec M, Hubner N, Vingron M, Johannes F (2015) histoneHMM: differential analysis of histone modifications with broad genomic footprints. BMC Bioinformatics 16:60. https://doi.org/10.1186/s12859-015-0491-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ji H, Li X, Wang QF, Ning Y (2013) Differential principal component analysis of ChIP-seq. Proc Natl Acad Sci U S A 110(17):6789–6794. https://doi.org/10.1073/pnas.1204398110

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu Q, Won KJ, Li H (2015) Nonparametric tests for differential histone enrichment with ChIP-Seq data. Cancer Inform 14(Suppl 1):11–22. https://doi.org/10.4137/CIN.S13972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen L, Wang C, Qin ZS, Wu H (2015) A novel statistical method for quantitative comparison of multiple ChIP-seq datasets. Bioinformatics 31(12):1889–1896. https://doi.org/10.1093/bioinformatics/btv094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinhauser S, Kurzawa N, Eils R, Herrmann C (2016) A comprehensive comparison of tools for differential ChIP-seq analysis. Brief Bioinform 17(6):953–966. https://doi.org/10.1093/bib/bbv110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ashoor H, Louis-Brennetot C, Janoueix-Lerosey I, Bajic VB, Boeva V (2017) HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics. Nucleic Acids Res 45(8):e58. https://doi.org/10.1093/nar/gkw1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen KB, Hardison R, Zhang Y (2014) dCaP: detecting differential binding events in multiple conditions and proteins. BMC Genomics 15(Suppl 9):S12. https://doi.org/10.1186/1471-2164-15-S9-S12

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, Fear J, Hu J, Haecker I, Zhou L, Renne R, Bloom D, McIntyre LM (2014) Leveraging biological replicates to improve analysis in ChIP-seq experiments. Comput Struct Biotechnol J 9:e201401002. https://doi.org/10.5936/csbj.201401002

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hutchins AP, Jauch R, Dyla M, Miranda-Saavedra D (2014) Glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data. Cell Regen (Lond) 3(1):1. https://doi.org/10.1186/2045-9769-3-1

    Article  CAS  Google Scholar 

  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He J, Fu X, Zhang M, He F, Li W, Abdul MM, Zhou J, Sun L, Chang C, Li Y, Liu H, Wu K, Babarinde IA, Zhuang Q, Loh YH, Chen J, Esteban MA, Hutchins AP (2019) Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Commun 10(1):34. https://doi.org/10.1038/s41467-018-08006-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun X, Wang X, Tang Z, Grivainis M, Kahler D, Yun C, Mita P, Fenyo D, Boeke JD (2018) Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A 115(24):E5526–E5535. https://doi.org/10.1073/pnas.1722565115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518(7539):331–336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, Canfield TK, Thurman RE, Cheng Y, Gulsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos JA, Taylor J, Hardison RC, Kahveci T, Ren B, Gilbert DM (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515(7527):402–405. https://doi.org/10.1038/nature13986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, Ni Y, Birney E, Lieb JD, Furey TS, Crawford GE, Iyer VR (2012) Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res 22(1):9–24. https://doi.org/10.1101/gr.127597.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hashimoto TB, Edwards MD, Gifford DK (2014) Universal count correction for high-throughput sequencing. PLoS Comput Biol 10(3):e1003494. https://doi.org/10.1371/journal.pcbi.1003494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kivioja T, Vaharautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9(1):72–74. https://doi.org/10.1038/nmeth.1778

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31970589, 31801217, 31850410463, and 31850410486), and by the Center for Computational Science and Engineering of Southern University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Hutchins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, G., Babarinde, I.A., Zhuang, Q., Hutchins, A.P. (2021). Unified Analysis of Multiple ChIP-Seq Datasets. In: Ruzov, A., Gering, M. (eds) DNA Modifications. Methods in Molecular Biology, vol 2198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0876-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0876-0_33

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0875-3

  • Online ISBN: 978-1-0716-0876-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics