Skip to main content

Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) to Map Regions of Histone Methylation Patterns in Embryonic Stem Cells

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1150))

Abstract

Chromatin states are the key to embryonic stem cell pluripotency and differentiation. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-Seq) is increasingly used to map chromatin states and to functionally annotate the genome. Many ChIP-Seq profiles, especially those of histone methylations, are noisy and diffuse. Here we describe SICER (Zang et al., Bioinformatics 25(15):1952–1958, 2009), an algorithm specifically designed to identify disperse ChIP-enriched regions with high sensitivity and specificity. This algorithm has found a lot of applications in epigenomic studies. In this Chapter, we will demonstrate in detail how to run SICER to delineate ChIP-enriched regions and assess their statistical significance, and to identify regions of differential enrichment when two chromatin states are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barski A, Cuddapah S, Cui KR, Roh TY, Schones DE, Wang ZB, Wei G, Chepelev I, Zhao KJ (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZB, Zang CZ, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui KR, Roh TY, Peng WQ, Zhang MQ, Zhao KJ (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25(15):1952–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18(7):1923–1938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    Article  CAS  PubMed  Google Scholar 

  7. Lachner M, O’Carroll N, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300

    Google Scholar 

  10. Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time histogram. Neural Comput 19:1503–1527

    Article  PubMed  Google Scholar 

  11. Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics 27(6):870–871. doi:10.1093/bioinformatics/btr030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Koehler R, Issac H, Cloonan N, Grimmond SM (2010) The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics. doi:10.1093/bioinformatics/btq640

    PubMed Central  PubMed  Google Scholar 

  13. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. The EPC (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9(4):e1001046. doi:10.1371/journal.pbio.1001046

    Article  Google Scholar 

  15. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, Wong MC, Maddren M, Fang R, Heitner SG, Lee BT, Barber GP, Harte RA, Diekhans M, Long JC, Wilder SP, Zweig AS, Karolchik D, Kuhn RM, Haussler D, Kent WJ (2012) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. doi:10.1093/nar/gks1172

    Google Scholar 

  16. Wang L, Xu S, Lee J-E, Baldridge A, Grullon S, Peng W, Ge K (2013) Histone H3K9 methyltransferase G9a represses PPAR[gamma] expression and adipogenesis. EMBO J 32(1):45–59. http://www.nature.com/emboj/journal/v32/n1/suppinfo/emboj2012306a_S1.html

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Intramural Research Program of the NIDDK, NIH to KG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqun Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, S., Grullon, S., Ge, K., Peng, W. (2014). Spatial Clustering for Identification of ChIP-Enriched Regions (SICER) to Map Regions of Histone Methylation Patterns in Embryonic Stem Cells. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 1150. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0512-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0512-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0511-9

  • Online ISBN: 978-1-4939-0512-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics