Skip to main content

Intravital Imaging of Brain Tumors

  • Protocol
  • First Online:
Brain Tumors

Part of the book series: Neuromethods ((NM,volume 158))

Abstract

Intravital imaging on live animals has provided new insights into the dynamics of tumor cells within their orthotopic microenvironment. In this chapter, we present a detailed method for intravital imaging of glioblastoma (GBM) cells in the mouse brain, with particular emphasis on the interactions of GBM cells with the surrounding vasculature.

This method involves the implantation of a cranial window and longitudinal intravital imaging as well as the analysis of tumor cells within their orthotopic microenvironment in vivo at a single-cell resolution using multiphoton imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krammer MJ et al (2011) Modern management of rare brain metastases in adults. J Neuro-Oncol 105(1):9–25

    Article  Google Scholar 

  2. Alcantara Llaguno SR, Parada LF (2016) Cell of origin of glioma: biological and clinical implications. Br J Cancer 115(12):1445–1450

    Article  Google Scholar 

  3. Prager BC et al (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24(1):41–53

    Article  CAS  Google Scholar 

  4. Kirui DK, Ferrari M (2015) Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr Drug Targets 16(6):528–541

    Article  CAS  Google Scholar 

  5. Gabriel EM et al (2018) Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 9(28):20165–20178

    Article  Google Scholar 

  6. Weigert R et al (2010) Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133(5):481–491

    Article  CAS  Google Scholar 

  7. Suetsugu A et al (2018) Visualizing the tumor microenvironment by color-coded imaging in orthotopic mouse models of cancer. Anticancer Res 38(4):1847–1857

    CAS  PubMed  Google Scholar 

  8. Wakimoto H et al (2012) Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro-Oncology 14(2):132–144

    Article  CAS  Google Scholar 

  9. Kloepper J et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A 113(16):4476–4481

    Article  CAS  Google Scholar 

  10. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  Google Scholar 

  11. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  CAS  Google Scholar 

  12. Griveau A et al (2018) A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874–889. e7

    Article  CAS  Google Scholar 

  13. Seano G (2018) Targeting the perivascular niche in brain tumors. Curr Opin Oncol 30(1):54–60

    Article  CAS  Google Scholar 

  14. Seano G, Jain RK (2019) Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis 23(1):9–16

    Google Scholar 

  15. Martin JD, Seano G, Jain RK (2019) Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol 81:505–534

    Article  CAS  Google Scholar 

  16. Kamoun WS et al (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7(8):655–660

    Article  CAS  Google Scholar 

  17. Monvoisin A et al (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422

    Article  CAS  Google Scholar 

  18. Motoike T et al (2000) Universal GFP reporter for the study of vascular development. Genesis 28(2):75–81

    Article  CAS  Google Scholar 

  19. Wiesmann V et al (2015) Review of free software tools for image analysis of fluorescence cell micrographs. J Microsc 257(1):39–53

    Article  CAS  Google Scholar 

  20. Kherlopian AR et al (2008) A review of imaging techniques for systems biology. BMC Syst Biol 2:74

    Article  Google Scholar 

  21. Yardeni T et al (2011) Retro-orbital injections in mice. Lab Anim (NY) 40(5):155–160

    Article  Google Scholar 

  22. Masamoto K et al (2012) Repeated longitudinal in vivo imaging of neuro-glio-vascular unit at the peripheral boundary of ischemia in mouse cerebral cortex. Neuroscience 212:190–200

    Article  CAS  Google Scholar 

  23. Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5(5):e119

    Article  Google Scholar 

  24. Weigert R, Porat-Shliom N, Amornphimoltham P (2013) Imaging cell biology in live animals: ready for prime time. J Cell Biol 201(7):969–979

    Article  CAS  Google Scholar 

  25. Manning CS, Hooper S, Sahai EA (2015) Intravital imaging of SRF and notch signalling identifies a key role for EZH2 in invasive melanoma cells. Oncogene 34(33):4320–4332

    Article  CAS  Google Scholar 

  26. Prunier C et al (2016) LIM kinase inhibitor Pyr1 reduces the growth and metastatic load of breast cancers. Cancer Res 76(12):3541–3552

    Article  CAS  Google Scholar 

  27. Peterson TE et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci U S A 113(16):4470–4475

    Article  CAS  Google Scholar 

  28. Seano G et al (2019) Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng 3(3):230–245

    Article  CAS  Google Scholar 

  29. Uhl C et al (2018) EphB4 mediates resistance to antiangiogenic therapy in experimental glioma. Angiogenesis 21(4):873–881

    Article  CAS  Google Scholar 

  30. Laughney AM et al (2014) Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci Transl Med 6(261):261ra152

    Article  Google Scholar 

  31. Orth JD et al (2011) Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res 71(13):4608–4616

    Article  CAS  Google Scholar 

  32. Nobis M et al (2018) Molecular mobility and activity in an intravital imaging setting—implications for cancer progression and targeting. J Cell Sci 131(5):jcs206995

    Article  Google Scholar 

  33. Akemann W et al (2015) Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy. Opt Express 23(22):28191–28205

    Article  CAS  Google Scholar 

  34. Li B et al (2019) An adaptive excitation source for high-speed multiphoton microscopy. Nat Methods 17(2):163–166

    Google Scholar 

  35. Ji N et al (2012) Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A 109(1):22–27

    Google Scholar 

  36. Zheng W et al (2017) Adaptive optics improves multiphoton super-resolution imaging. Nat Methods 14(9):869–872

    Article  CAS  Google Scholar 

  37. Horton NG et al (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3):205

    Article  CAS  Google Scholar 

  38. Ouzounov DG et al (2017) In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14(4):388–390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pauline Deshors, Aafrin Pettiwala, and Guillaume Bourmeau (Institut Curie Research Center, Orsay-Paris) for critical reading and discussion. A special thank goes to Renaud Chabrier for illustration at Fig. 4.1. This work was supported by the Fondation ARC pour la recherche sur le cancer, the Inserm-CNRS ATIP-Avenir grant, the European Research Council (ERC) under the European Union’s Horizon 2020 (grant agreement no. 805225), and the NanoTheRad grant from Paris-Saclay University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Seano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pichol-Thievend, C., Julien, B., Anézo, O., Philip, B., Seano, G. (2021). Intravital Imaging of Brain Tumors. In: Seano, G. (eds) Brain Tumors. Neuromethods, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0856-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0856-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-0855-5

  • Online ISBN: 978-1-0716-0856-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics