Skip to main content

Advertisement

Log in

Intravital microscopy: a novel tool to study cell biology in living animals

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154

    PubMed  Google Scholar 

  • Andresen V, Alexander S, Heupel WM, Hirschberg M, Hoffman RM, Friedl P (2009) Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr Opin Biotechnol 20:54–62

    PubMed  Google Scholar 

  • Ashworth SL, Tanner GA (2006) Fluorescent labeling of renal cells in vivo. Nephron Physiol 103:p91–p96

    PubMed  Google Scholar 

  • Beck JS, Berg BN (1931) The circulatory pattern in the Islands of Langerhans. Am J Pathol 7:31–36

    PubMed  Google Scholar 

  • Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115

    PubMed  Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    PubMed  Google Scholar 

  • Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356

    PubMed  Google Scholar 

  • Bousso P, Robey E (2003) Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4:579–585

    PubMed  Google Scholar 

  • Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397

    PubMed  Google Scholar 

  • Brown E, McKee T, di Tomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800

    PubMed  Google Scholar 

  • Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626

    PubMed  Google Scholar 

  • Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    PubMed  Google Scholar 

  • Chaigneau E, Oheim M, Audinat E, Charpak S (2003) Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci USA 100:13081–13086

    PubMed  Google Scholar 

  • Chaigneau E, Tiret P, Lecoq J, Ducros M, Knopfel T, Charpak S (2007) The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 27:6452–6460

    PubMed  Google Scholar 

  • Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD (2003) 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141:53–62

    PubMed  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    PubMed  Google Scholar 

  • Debarre D, Supatto W, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    PubMed  Google Scholar 

  • Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916

    PubMed  Google Scholar 

  • Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28:271–284

    PubMed  Google Scholar 

  • Evans CL, Potma EO, Puoris’haag M, Cote D, Lin CP, Xie XS (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci USA 102:16807–16812

    PubMed  Google Scholar 

  • Filipe-Santos O, Pescher P, Breart B, Lippuner C, Aebischer T, Glaichenhaus N, Spath GF, Bousso P (2009) A dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major infection. Cell Host Microbe 6:23–33

    PubMed  Google Scholar 

  • Fu Y, Huff TB, Wang HW, Wang H, Cheng JX (2008) Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt Express 16:19396–19409

    PubMed  Google Scholar 

  • Fukumura D, Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS 116:695–715

    PubMed  Google Scholar 

  • Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104

    PubMed  Google Scholar 

  • Gavard J, Hou X, Qu Y, Masedunskas A, Martin D, Weigert R, Li X, Gutkind JS (2009) A role for a CXCR2/phosphatidylinositol 3-kinase gamma signaling axis in acute and chronic vascular permeability. Mol Cell Biol 29:2469–2480

    PubMed  Google Scholar 

  • Germain RN, Castellino F, Chieppa M, Egen JG, Huang AY, Koo LY, Qi H (2005) An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 17:431–441

    PubMed  Google Scholar 

  • Ghajar CM, Bissell MJ (2008) Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem Cell Biol 130:1105–1118

    PubMed  Google Scholar 

  • Gligorijevic B, Kedrin D, Segall JE, Condeelis J, van Rheenen J (2009) Dendra2 photoswitching through the Mammary Imaging Window. J Vis Exp 5(28). pii:1278

    Google Scholar 

  • Göppert-Mayer M (1931) Uber elementarakte mit zwei quantensprungen. Ann Phys (Leipzig) 5:273–294

    Google Scholar 

  • Grayson MH, Hotchkiss RS, Karl IE, Holtzman MJ, Chaplin DD (2003) Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. Am J Physiol Heart Circ Physiol 284:H2213–H2226

    PubMed  Google Scholar 

  • Gualda EJ, Filippidis G, Voglis G, Mari M, Fotakis C, Tavernarakis N (2008) In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. J Microsc 229:141–150

    PubMed  Google Scholar 

  • Guan Y, Worrell RT, Pritts TA, Montrose MH (2009) Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo. Am J Physiol Gastrointest Liver Physiol 297:G187–G196

    PubMed  Google Scholar 

  • Hall AM, Unwin RJ, Parker N, Duchen MR (2009) Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 20:1293–1302

    PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    PubMed  Google Scholar 

  • Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE, Loomis J, Barber GN, Bennink JR, Yewdell JW (2008) Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 9:155–165

    PubMed  Google Scholar 

  • Hickman HD, Bennink JR, Yewdell JW (2009) Caught in the act: intravital multiphoton microscopy of host–pathogen interactions. Cell Host Microbe 5:13–21

    PubMed  Google Scholar 

  • Hillen F, Kaijzel EL, Castermans K, oude Egbrink MG, Lowik CW, Griffioen AW (2008) A transgenic Tie2-GFP athymic mouse model; a tool for vascular biology in xenograft tumors. Biochem Biophys Res Commun 368:364–367

    PubMed  Google Scholar 

  • Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J (2006) Quantitative imaging of basic functions in renal (patho)physiology. Am J Physiol Renal Physiol 291:F495–F502

    PubMed  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    PubMed  Google Scholar 

  • Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE, van Rheenen J (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    PubMed  Google Scholar 

  • Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364

    PubMed  Google Scholar 

  • Koehl GE, Gaumann A, Geissler EK (2009) Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 26:329–344

    PubMed  Google Scholar 

  • Konig K, Ehlers A, Riemann I, Schenkl S, Buckle R, Kaatz M (2007) Clinical two-photon microendoscopy. Microsc Res Tech 70:398–402

    PubMed  Google Scholar 

  • Laschke MW, Kerdudou S, Herrmann M, Menger MD (2005) Intravital fluorescence microscopy: a novel tool for the study of the interaction of Staphylococcus aureus with the microvascular endothelium in vivo. J Infect Dis 191:435–443

    PubMed  Google Scholar 

  • Lauritzen HP, Ploug T, Prats C, Tavare JM, Galbo H (2006) Imaging of insulin signaling in skeletal muscle of living mice shows major role of T-tubules. Diabetes 55:1300–1306

    PubMed  Google Scholar 

  • Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91:1908–1912

    PubMed  Google Scholar 

  • Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K (2009) Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20:28–36

    PubMed  Google Scholar 

  • Li ZB, Cai W, Chen X (2007) Semiconductor quantum dots for in vivo imaging. J Nanosci Nanotechnol 7:2567–2581

    PubMed  Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    PubMed  Google Scholar 

  • Lippincott-Schwartz J, Patterson GH (2008) Fluorescent proteins for photoactivation experiments. Methods Cell Biol 85:45–61

    PubMed  Google Scholar 

  • Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    PubMed  Google Scholar 

  • Llewellyn ME, Barretto RP, Delp SL, Schnitzer MJ (2008) Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454:784–788

    PubMed  Google Scholar 

  • Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    PubMed  Google Scholar 

  • Mansson LE, Melican K, Boekel J, Sandoval RM, Hautefort I, Tanner GA, Molitoris BA, Richter-Dahlfors A (2007) Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9:413–424

    PubMed  Google Scholar 

  • Masedunskas A, Weigert R (2008) Intravital two-photon microscopy for studying the uptake and trafficking of fluorescently conjugated molecules in live rodents. Traffic 9:1801–1810

    PubMed  Google Scholar 

  • Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, oude Egbrink MG, van Zandvoort MA (2007) Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res 44:87–98

    PubMed  Google Scholar 

  • Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    PubMed  Google Scholar 

  • Mertz J (2004) Nonlinear microscopy: new techniques and applications. Curr Opin Neurobiol 14:610–616

    PubMed  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    PubMed  Google Scholar 

  • Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873

    PubMed  Google Scholar 

  • Miller MJ, Safrina O, Parker I, Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200:847–856

    PubMed  Google Scholar 

  • Mizrahi A, Crowley JC, Shtoyerman E, Katz LC (2004) High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci 24:3147–3151

    PubMed  Google Scholar 

  • Morishige N, Petroll WM, Nishida T, Kenney MC, Jester JV (2006) Noninvasive corneal stromal collagen imaging using two-photon-generated second-harmonic signals. J Cataract Refract Surg 32:1784–1791

    PubMed  Google Scholar 

  • Muller M, Zumbusch A (2007) Coherent anti-Stokes Raman scattering microscopy. ChemPhysChem 8:2156–2170

    PubMed  Google Scholar 

  • Niesner RA, Andresen V, Gunzer M (2008) Intravital two-photon microscopy: focus on speed and time resolved imaging modalities. Immunol Rev 221:7–25

    PubMed  Google Scholar 

  • Nitschke C, Garin A, Kosco-Vilbois M, Gunzer M (2008) 3D and 4D imaging of immune cells in vitro and in vivo. Histochem Cell Biol 130:1053–1062

    PubMed  Google Scholar 

  • Norman MU, Moriarty TJ, Dresser AR, Millen B, Kubes P, Chaconas G (2008) Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLoS Pathog 4:e1000169

    PubMed  Google Scholar 

  • Nyman LR, Wells KS, Head WS, McCaughey M, Ford E, Brissova M, Piston DW, Powers AC (2008) Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J Clin Invest 118:3790–3797

    PubMed  Google Scholar 

  • O’Brien GS, Rieger S, Martin SM, Cavanaugh AM, Portera-Cailliau C, Sagasti A (2009) Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J Vis Exp 16(24). pii:1129

    Google Scholar 

  • Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 111:29–37

    PubMed  Google Scholar 

  • Oheim M, Michael DJ, Geisbauer M, Madsen D, Chow RH (2006) Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches. Adv Drug Deliv Rev 58:788–808

    PubMed  Google Scholar 

  • Pan F, Gan WB (2008) Two-photon imaging of dendritic spine development in the mouse cortex. Dev Neurobiol 68:771–778

    PubMed  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    PubMed  Google Scholar 

  • Paxian M, Keller SA, Cross B, Huynh TT, Clemens MG (2004) High-resolution visualization of oxygen distribution in the liver in vivo. Am J Physiol Gastrointest Liver Physiol 286:G37–G44

    PubMed  Google Scholar 

  • Pena AM, Fabre A, Debarre D, Marchal-Somme J, Crestani B, Martin JL, Beaurepaire E, Schanne-Klein MC (2007) Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy. Microsc Res Tech 70:162–170

    PubMed  Google Scholar 

  • Perentes JY, McKee TD, Ley CD, Mathiew H, Dawson M, Padera TP, Munn LL, Jain RK, Boucher Y (2009) In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts. Nat Methods 6:143–145

    PubMed  Google Scholar 

  • Pinner S, Sahai E (2008) Imaging amoeboid cancer cell motility in vivo. J Microsc 231:441–445

    PubMed  Google Scholar 

  • Pinner S, Jordan P, Sharrock K, Bazley L, Collinson L, Marais R, Bonvin E, Goding C, Sahai E (2009) Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res 69:7969–7977

    PubMed  Google Scholar 

  • Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26:357–370

    PubMed  Google Scholar 

  • Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312:1672–1676

    PubMed  Google Scholar 

  • Radosevich AJ, Bouchard MB, Burgess SA, Chen BR, Hillman EM (2008) Hyperspectral in vivo two-photon microscopy of intrinsic contrast. Opt Lett 33:2164–2166

    PubMed  Google Scholar 

  • Ricard C, Vial JC, Douady J, van der Sanden B (2007) In vivo imaging of elastic fibers using sulforhodamine B. J Biomed Opt 12:064017

    PubMed  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    PubMed  Google Scholar 

  • Roberts MS, Roberts MJ, Robertson TA, Sanchez W, Thorling C, Zou Y, Zhao X, Becker W, Zvyagin AV (2008) In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver. J Biophotonics 1:478–493

    PubMed  Google Scholar 

  • Roediger B, Ng LG, Smith AL, Fazekas de St Groth B, Weninger W (2008) Visualizing dendritic cell migration within the skin. Histochem Cell Biol 130:1131–1146

    PubMed  Google Scholar 

  • Rothstein EC, Carroll S, Combs CA, Jobsis PD, Balaban RS (2005) Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters. Biophys J 88:2165–2176

    PubMed  Google Scholar 

  • Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166

    PubMed  Google Scholar 

  • Rudolf R, Magalhaes PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173:187–193

    PubMed  Google Scholar 

  • Sandoval RM, Molitoris BA (2008) Quantifying endocytosis in vivo using intravital two-photon microscopy. Methods Mol Biol 440:389–402

    PubMed  Google Scholar 

  • Sandoval RM, Kennedy MD, Low PS, Molitoris BA (2004) Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 287:C517–C526

    PubMed  Google Scholar 

  • Schenke-Layland K, Xie J, Angelis E, Starcher B, Wu K, Riemann I, MacLellan WR, Hamm-Alvarez SF (2008) Increased degradation of extracellular matrix structures of lacrimal glands implicated in the pathogenesis of Sjogren’s syndrome. Matrix Biol 27:53–66

    PubMed  Google Scholar 

  • Sen D, Deerinck TJ, Ellisman MH, Parker I, Cahalan MD (2008) Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo. PLoS One 3:e3290

    PubMed  Google Scholar 

  • Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS (2008) Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 8:2599–2606

    PubMed  Google Scholar 

  • So PT, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429

    PubMed  Google Scholar 

  • Spiess E, Bestvater F, Heckel-Pompey A, Toth K, Hacker M, Stobrawa G, Feurer T, Wotzlaw C, Berchner-Pfannschmidt U, Porwol T, Acker H (2005) Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc 217:200–204

    PubMed  Google Scholar 

  • Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287

    PubMed  Google Scholar 

  • Sramkova M, Masedunskas A, Parente L, Molinolo A, Weigert R (2009) Expression of plasmid DNA in the salivary gland epithelium: novel approaches to study dynamic cellular processes in live animals. Am J Physiol Cell Physiol 297:C1347–C1357

    PubMed  Google Scholar 

  • Stefanovic B, Hutchinson E, Yakovleva V, Schram V, Russell JT, Belluscio L, Koretsky AP, Silva AC (2008) Functional reactivity of cerebral capillaries. J Cereb Blood Flow Metab 28:961–972

    PubMed  Google Scholar 

  • Stockholm D, Bartoli M, Sillon G, Bourg N, Davoust J, Richard I (2005) Imaging calpain protease activity by multiphoton FRET in living mice. J Mol Biol 346:215–222

    PubMed  Google Scholar 

  • Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296:1873–1876

    PubMed  Google Scholar 

  • Stutzmann GE, Parker I (2005) Dynamic multiphoton imaging: a live view from cells to systems. Physiology (Bethesda) 20:15–21

    Google Scholar 

  • Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285:F191–F198

    PubMed  Google Scholar 

  • Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    PubMed  Google Scholar 

  • Tanner GA, Sandoval RM, Molitoris BA, Bamburg JR, Ashworth SL (2005) Micropuncture gene delivery and intravital two-photon visualization of protein expression in rat kidney. Am J Physiol Renal Physiol 289:F638–F643

    PubMed  Google Scholar 

  • Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024

    PubMed  Google Scholar 

  • Toma I, Kang JJ, Peti-Peterdi J (2006) Imaging renin content and release in the living kidney. Nephron Physiol 103:p71–p74

    PubMed  Google Scholar 

  • Verant P, Ricard C, Serduc R, Vial JC, van der Sanden B (2008) In vivo staining of neocortical astrocytes via the cerebral microcirculation using sulforhodamine B. J Biomed Opt 13:064028

    PubMed  Google Scholar 

  • Vinegoni C, Razansky D, Pitsouli C, Perrimon N, Ntziachristos V, Weissleder R (2009) Mesoscopic fluorescence tomography for in vivo imaging of developing Drosophila. J Vis Exp 20(30). pii:1510

    Google Scholar 

  • Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511

    PubMed  Google Scholar 

  • Wang HW, Fu Y, Huff TB, Le TT, Wang H, Cheng JX (2009) Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy. Vib Spectrosc 50:160–167

    PubMed  Google Scholar 

  • Wu L, Tiwari MM, Messer KJ, Holthoff JH, Gokden N, Brock RW, Mayeux PR (2007) Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. Am J Physiol Renal Physiol 292:F261–F268

    PubMed  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    PubMed  Google Scholar 

  • Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176

    PubMed  Google Scholar 

  • Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12:711–716

    PubMed  Google Scholar 

  • Yu W, Sandoval RM, Molitoris BA (2005) Quantitative intravital microscopy using a Generalized Polarity concept for kidney studies. Am J Physiol Cell Physiol 289:C1197–C1208

    PubMed  Google Scholar 

  • Yu W, Sandoval RM, Molitoris BA (2007) Rapid determination of renal filtration function using an optical ratiometric imaging approach. Am J Physiol Renal Physiol 292:F1873–F1880

    PubMed  Google Scholar 

  • Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5:e119

    PubMed  Google Scholar 

  • Zhong Z, Ramshesh VK, Rehman H, Currin RT, Sridharan V, Theruvath TP, Kim I, Wright GL, Lemasters JJ (2008) Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 295:G823–G832

    PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003a) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080

    PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003b) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377

    PubMed  Google Scholar 

  • Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Institute of Dental and Craniofacial Research. We apologize to those whose work could not be cited due to space limitations. We would like to thank Dr. Silvio Gutkind, Dr. Julie Donaldson and Dr. Omayma Al-Awar for critical reading of the manuscript and all the members of the Oral and Pharyngeal Cancer Branch for invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Weigert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary movie 1

: Blood flow in the liver of a live rat. 70 kDa Texas-red dextran (red), intrinsic fluorescence (cyan). Excitation wavelength 740 nm (MOV 9831 kb)

Supplementary movie 2

: Blood flow in the kidney of a live rat. 70 kDa Texas-red dextran (red), intrinsic fluorescence (green). Excitation wavelength 740 nm (MOV 9610 kb)

Supplementary movie 3: Volume rendering of the vasculature (500 kDa FITC dextran, green) and the salivary ducts in a live rat (70 kDA Texas red dextran injected into the Wharton’s duct). Excitation wavelength 920 nm (MOV 9232 kb)

Supplementary movie 4: Endocytosis of fluorescently labeled dextran in the salivary glands of live rats. The nuclei are labeled with Hoechst (blue), the vasculature with a 500 kDa FITC dextran (green) and the endosomes with 70 kDa Texas red dextran (red). Time is expressed in min:sec. Excitation wavelength 820 nm (MOV 7925 kb)

Supplementary movie 5: Fusion of lysosomes and dynamics of mitochondria. Lysosomes are labeled with Alexa 488-dextran (green) and mitochondria with the vital dye mitotracker (red). Time lapse performed in single confocal microscopy. (MOV 16306 kb)

Supplementary movie 6

– Acinar cell expressing Lifeact GFP (green) and TG38-mcherry (red). A blood vessel is highlighted by a systemic injection of 70 kDa Texas-red dextran. Excitation wavelength 930 nm. (MOV 6669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigert, R., Sramkova, M., Parente, L. et al. Intravital microscopy: a novel tool to study cell biology in living animals. Histochem Cell Biol 133, 481–491 (2010). https://doi.org/10.1007/s00418-010-0692-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0692-z

Keywords

Navigation