Skip to main content

Affinity Tags in Protein Purification and Peptide Enrichment: An Overview

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woodbury C (2006) Recombinant DNA basics. In: Groves M (ed) Pharmaceutical biotechnology. Taylor & Francis Group, Abingdon, pp 31–60

    Google Scholar 

  2. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    Article  CAS  Google Scholar 

  3. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  Google Scholar 

  4. Malhotra A (2009) Tagging for protein expression. In: Richard R, Murray P (eds) Methods in enzymology: guide to protein purification. Academic, Cambridge, MA, pp 239–258

    Chapter  Google Scholar 

  5. Walls D, Loughran S (2011) Tagging recombinant proteins to enhance solubility and aid purification. In: Walls D, Loughran S (eds) Protein chromatography: methods and protocols. Humana, Totowa, NJ, pp 151–175

    Chapter  Google Scholar 

  6. Loughran ST, Walls D (2017) Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 1485:131–156

    Article  CAS  Google Scholar 

  7. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 9(9):1–23

    Google Scholar 

  8. Pina AS, Lowe CR, Roque ACA (2014) Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 32:366–381

    Article  CAS  Google Scholar 

  9. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    Article  CAS  Google Scholar 

  10. Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Nygren PÅ (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    Article  CAS  Google Scholar 

  11. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    Article  CAS  Google Scholar 

  12. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif 80:283–293

    Article  CAS  Google Scholar 

  13. Fong BA, Wu W-Y, Wood DW (2010) The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol 28:272–279

    Article  CAS  Google Scholar 

  14. Li Y (2011) Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 33:869–881

    Article  CAS  Google Scholar 

  15. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  Google Scholar 

  16. LaVallie E, Lu Z (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. In: Thorner J, Emr S, Abelson J (eds) Applications of chimeric genes and hybrid proteins: gene expression and protein purification. Elsevier, Amsterdam, pp 322–340

    Chapter  Google Scholar 

  17. Kaplan W et al (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406

    Article  CAS  Google Scholar 

  18. Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187

    Article  CAS  Google Scholar 

  19. Singh C, Asano K (2007) Localization and characterization of protein-protein interactions sites. In: Jon L (ed) Methods in enzymology: translation initiation: extract systems and molecular genetics. Academic, Cambridge, MA, pp 139–161

    Chapter  Google Scholar 

  20. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    Article  CAS  Google Scholar 

  21. Kellerman O, Ferenci T (1982) Maltose-binding protein from Escherichia coli. In: Wills AW (ed) Methods in enzymology: carbohydrate metabolism – parte E. Academic, Cambridge, MA, pp 459–463

    Chapter  Google Scholar 

  22. di Guana C, Lib P, Riggsa PD, Inouyeb H (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:21–30

    Article  Google Scholar 

  23. Fox JD, Waugh DS (2003) Maltose-binding protein as a solubility enhancer. In: Vaillancourt P (ed) Methods in molecular biology – E. coli gene expression protocols. Humana, Totowa, NJ, pp 99–118. https://doi.org/10.1385/1-59259-301-1:99

    Chapter  Google Scholar 

  24. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  Google Scholar 

  25. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212:167–184

    Article  CAS  Google Scholar 

  26. LaVallie ER et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E coli cytoplasm. Nat Biotechnol 11:187–193

    Article  CAS  Google Scholar 

  27. Marblestone JG et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  Google Scholar 

  28. Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  CAS  Google Scholar 

  29. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:303–317

    Article  CAS  Google Scholar 

  30. Malakhov MP et al (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75–86

    Article  CAS  Google Scholar 

  31. Gusarov I, Nudler E (2001) Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437–449

    Article  CAS  Google Scholar 

  32. Liu K, Hanna MM (1995) NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol 247:547–558

    Article  CAS  Google Scholar 

  33. Cohen SE et al (2010) Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A 107:15517–15522

    Article  Google Scholar 

  34. Harrison R (2000) Expression of soluble heterologous proteins via fusion with NusA protein. Innovations 11:4–7

    Google Scholar 

  35. Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    Article  CAS  Google Scholar 

  36. Nilsson B, Abrahmsén L (1990) Fusions to staphylococcal protein A. Methods Enzymol 185:144–161

    Article  CAS  Google Scholar 

  37. Eklund M, Axelsson L, Uhlén M, Nygren P-A (2002) Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins 48:454–462

    Article  CAS  Google Scholar 

  38. Nilsson B, Abrahmsén L, Uhlén M (1985) Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J 4:1075–1080

    Article  CAS  Google Scholar 

  39. Nilsson B et al (1987) A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–113

    Article  CAS  Google Scholar 

  40. Hedhammar M, Alm T, Gräslund T, Hober S (2006) Single-step recovery and solid-phase refolding of inclusion body proteins using a polycationic purification tag. Biotechnol J 1:187–196

    Article  CAS  Google Scholar 

  41. Hedhammar M, Gräslund T, Uhlén M, Hober S (2004) Negatively charged purification tags for selective anion-exchange recovery. Protein Eng Des Sel PEDS 17:779–786

    Article  CAS  Google Scholar 

  42. Kanje S et al (2018) Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J Mol Biol 430:3427–3438

    Article  CAS  Google Scholar 

  43. Fernandes CSM, Pina AS, Dias AMGC, Branco RJF, Roque ACA (2014) A theoretical and experimental approach toward the development of affinity adsorbents for GFP and GFP-fusion proteins purification. J Biotechnol 186:13–20

    Article  CAS  Google Scholar 

  44. Pina AS et al (2015) Mild and cost-effective green fluorescent protein purification employing small synthetic ligands. J Chromatogr A 1418:83–93

    Article  CAS  Google Scholar 

  45. Pina AS et al (2016) Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins. J Chromatogr A 1472:55–65

    Article  CAS  Google Scholar 

  46. Fernandes CSM, Pina AS, Batalha ÍL, Roque ACA (2017) Magnetic fishing of recombinant green fluorescent proteins and tagged proteins with designed synthetic ligands. Sep Sci Technol 52:2907–2915

    Article  CAS  Google Scholar 

  47. Locatelli-Hoops S, Sheen FC, Zoubak L, Gawrisch K, Yeliseev AA (2013) Application of HaloTag technology to expression and purification of cannabinoid receptor CB2. Protein Expr Purif 89:62–72

    Article  CAS  Google Scholar 

  48. England CG, Luo H, Cai W (2015) HaloTag technology: a versatile platform for biomedical applications. Bioconjug Chem 26:975–986

    Article  CAS  Google Scholar 

  49. Walkup WG, Kennedy MB (2015) Protein purification using PDZ affinity chromatography. Curr Protoc Protein Sci 80:9.10.1–9.10.37

    Article  Google Scholar 

  50. Hussack G et al (2017) A novel affinity tag, ABTAG, and its application to the affinity screening of single-domain antibodies selected by phage display. Front Immunol 8:1406

    Article  CAS  Google Scholar 

  51. Khairil Anuar INA et al (2019) Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat Commun 10:1–13

    Article  CAS  Google Scholar 

  52. Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599

    Article  CAS  Google Scholar 

  53. Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr A 411:177–184

    Article  CAS  Google Scholar 

  54. Hochuli E, Bannwarth W, Dobeli H, Gentzi R, Stuber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325

    Article  CAS  Google Scholar 

  55. Block H et al (2009) Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol 463:439–473

    Article  CAS  Google Scholar 

  56. Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49:335–360

    Article  CAS  Google Scholar 

  57. Gutiérrez R, Martín Del Valle EM, Galán MA (2007) Immobilized metal-ion affinity chromatography: status and trends. Sep Purif Rev 36:71–111

    Article  CAS  Google Scholar 

  58. Dashivets T, Wood N, Hergersberg C, Buchner J, Haslbeck M (2009) Rapid matrix-assisted refolding of histidine-tagged proteins. Chembiochem 10:869–876

    Article  CAS  Google Scholar 

  59. Kato K, Sato H, Iwata H (2005) Immobilization of histidine-tagged recombinant proteins onto micropatterned surfaces for cell-based functional assays. Langmuir ACS J Surf Colloids 21:7071–7075

    Article  CAS  Google Scholar 

  60. Wegner GJ, Lee HJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal Chem 75:4740–4746

    Article  CAS  Google Scholar 

  61. Wilson DS, Nock S (2002) Functional protein microarrays. Curr Opin Chem Biol 6:81–85

    Article  CAS  Google Scholar 

  62. Mooney JT, Fredericks D, Hearn MTW (2011) Use of phage display methods to identify heptapeptide sequences for use as affinity purification ‘tags’ with novel chelating ligands in immobilized metal ion affinity chromatography. J Chromatogr A 1218:92–99

    Article  CAS  Google Scholar 

  63. Sainsbury F, Jutras PV, Vorster J, Goulet M-C, Michaud D (2016) A chimeric affinity tag for efficient expression and chromatographic purification of heterologous proteins from plants. Front Plant Sci 7:1–11

    Article  Google Scholar 

  64. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  CAS  Google Scholar 

  65. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    CAS  Google Scholar 

  66. Chatterjee DK, Esposito D (2006) Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 46:122–129

    Article  CAS  Google Scholar 

  67. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  68. Burgess RR, Thompson NE (2002) Advances in gentle immunoaffinity chromatography. Curr Opin Biotechnol 13:304–308

    Article  CAS  Google Scholar 

  69. Hopp TP et al (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    Article  CAS  Google Scholar 

  70. Thompson NE, Arthur TM, Burgess RR (2003) Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein. Anal Biochem 323:171–179

    Article  CAS  Google Scholar 

  71. Edwards AM et al (1990) Purification and lipid-layer crystallization of yeast RNA polymerase II. Proc Natl Acad Sci U S A 87:2122–2126

    Article  CAS  Google Scholar 

  72. Duellman SJ, Thompson NE, Burgess RR (2004) An epitope tag derived from human transcription factor IIB that reacts with a polyol-responsive monoclonal antibody. Protein Expr Purif 35:147–155

    Article  CAS  Google Scholar 

  73. Barbas CF III, Burton DR, Scott JK, Silverman GJ (2001) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  74. Fujii Y et al (2014) PA tag: a versatile protein tagging system using a super high affinity antibody against a dodecapeptide derived from human podoplanin. Protein Expr Purif 95:240–247

    Article  CAS  Google Scholar 

  75. Fujii Y, Kaneko MK, Kato Y (2016) MAP Tag: a novel tagging system for protein purification and detection. Monoclon Antib Immunodiagn Immunother 35:293–299

    Article  CAS  Google Scholar 

  76. Tabata S et al (2010) A rapid screening method for cell lines producing singly-tagged recombinant proteins using the ‘TARGET tag’ system. J Proteome 73:1777–1785

    Article  CAS  Google Scholar 

  77. Yano T et al (2016) AGIA tag system based on a high affinity rabbit monoclonal antibody against human dopamine receptor D1 for protein analysis. PLoS One 11:1–20

    Article  Google Scholar 

  78. Fujii Y et al (2017) Development of RAP tag, a novel tagging system for protein detection and purification. Monoclon Antib Immunodiagn Immunother 36:68–71

    Article  CAS  Google Scholar 

  79. Takeda H et al (2017) CP5 system, for simple and highly efficient protein purification with a C-terminal designed mini tag. PLoS One 12:1–18

    Article  Google Scholar 

  80. Morris J et al (2016) Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins. Protein Expr Purif 126:93–103

    Article  CAS  Google Scholar 

  81. Jayanthi S, Gundampati RK, Kumar TKS (2017) Simple and efficient purification of recombinant proteins using the heparin-binding affinity tag. Curr Protoc Protein Sci 90:6.16.1–6.16.13

    Article  CAS  Google Scholar 

  82. Kim JS, Raines RT (1993) Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci 2:348–356

    Article  CAS  Google Scholar 

  83. Karpeisky MY, Senchenko VN, Dianova MV, Kanevsky VY (1994) Formation and properties of S-protein complex with S-peptide-containing fusion protein. FEBS Lett 339:209–212

    Article  CAS  Google Scholar 

  84. Vaillancourt P, Zheng C-F, Hoang DQ, Breister L (2000) Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. In: Thorner J, Emr S, Abelson J (eds) Methods in enzymology. Academic, Cambridge, MA, pp 340–362. https://doi.org/10.1016/S0076-6879(00)26064-3

    Chapter  Google Scholar 

  85. Melkko S, Neri D (2003) Calmodulin as an affinity purification tag. In: Vaillancourt P (ed) E. coli gene expression protocols. Humana, Totowa, NJ, pp 69–78. https://doi.org/10.1385/1-59259-301-1:69

    Chapter  Google Scholar 

  86. Stofko-Hahn RE, Carr DW, Scott JD (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett 302:274–278

    Article  CAS  Google Scholar 

  87. Zheng CF, Simcox T, Xu L, Vaillancourt P (1997) A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene 186:55–60

    Article  CAS  Google Scholar 

  88. Neri D, De Lalla C, Petrul H, Neri P, Winter G (1995) Calmodulin as a versatile tag for antibody fragments. Nat Biotechnol 13:373–377

    Article  CAS  Google Scholar 

  89. Schmidt TG, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122

    Article  CAS  Google Scholar 

  90. Skerra A, Schmidt TGM (2000) Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. In: Sdejna JT (ed) Methods in enzymology: applications of chimeric genes and hybrid proteins part a: gene expression and protein purification. Academic, New York, NY, pp 271–304. https://doi.org/10.1016/S0076-6879(00)26060-6

    Chapter  Google Scholar 

  91. Schmidt TG, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol 255:753–766

    Article  CAS  Google Scholar 

  92. Korndörfer IP, Skerra A (2002) Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci 11:883–893

    Article  CAS  Google Scholar 

  93. Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982

    Article  CAS  Google Scholar 

  94. Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  CAS  Google Scholar 

  95. Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23:440–446

    Article  CAS  Google Scholar 

  96. Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98:3750–3755

    Article  CAS  Google Scholar 

  97. Pina AS, Pereira AS, Branco RJF, El Khoury G, Lowe CR (2014) A tailor-made “tag–receptor” affinity pair for the purification of fusion proteins. Chembiochem 15:1423–1435

    Article  CAS  Google Scholar 

  98. Choi SI, Song HW, Moon JW, Seong BL (2001) Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology. Biotechnol Bioeng 75:718–724

    Article  CAS  Google Scholar 

  99. Dougherty WG, Carrington JC, Cary SM, Parks TD (1988) Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J 7:1281–1287

    Article  CAS  Google Scholar 

  100. Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 31:1–11

    Article  CAS  Google Scholar 

  101. Chang J-Y (1985) Thrombin specificity: requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem 151:217–224

    Article  CAS  Google Scholar 

  102. Yuan L-D, Hua Z-C (2002) Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli. Protein Expr Purif 25:300–304

    Article  CAS  Google Scholar 

  103. Goh HC, Sobota RM, Ghadessy FJ, Nirantar S (2017) Going native: complete removal of protein purification affinity tags by simple modification of existing tags and proteases. Protein Expr Purif 129:18–24

    Article  CAS  Google Scholar 

  104. Tichy A et al (2011) Phosphoproteomics: searching for a needle in a haystack. J Proteome 74:2786–2797

    Article  CAS  Google Scholar 

  105. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  CAS  Google Scholar 

  106. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806

    Article  CAS  Google Scholar 

  107. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403

    Article  CAS  Google Scholar 

  108. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5:4052–4061

    Article  CAS  Google Scholar 

  109. Paradela A, Albar JP (2008) Advances in the analysis of protein phosphorylation. J Proteome Res 7:1809–1818

    Article  CAS  Google Scholar 

  110. Harsha HC, Pandey A (2010) Phosphoproteomics in cancer. Mol Oncol 4:482–495

    Article  CAS  Google Scholar 

  111. Højlund K et al (2003) Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J Biol Chem 278:10436–10442

    Article  CAS  Google Scholar 

  112. Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212

    Article  CAS  Google Scholar 

  113. Davis MJ et al (2001) Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 281:H1835–H1862

    Article  CAS  Google Scholar 

  114. Gloeckner CJ et al (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 9:1738–1745

    Article  CAS  Google Scholar 

  115. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  Google Scholar 

  116. Schwarz E, Bahn S (2008) Biomarker discovery in psychiatric disorders. Electrophoresis 29:2884–2890

    CAS  Google Scholar 

  117. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  CAS  Google Scholar 

  118. Batalha I, Zhou H, Lilley K, Lowe C (2016) Mimicking nature: phosphopeptide enrichment using combinatorial libraries of affinity ligands. J Chromatogr A 1457:76–87

    Article  CAS  Google Scholar 

  119. Batalha IL, Lychko I, Branco RJF, Iranzo O, Roque AC (2019) A β-Hairpins as peptidomimetics of human phosphoprotein-binding domains. Org Biomol Chem 17:3996–4004

    Article  CAS  Google Scholar 

  120. Schmidt SR, Andersson ME, Schweikart F, Andersson ME (2007) Current methods for phosphoprotein isolation and enrichment Split Inteins technology development View project single-use and disposables in bioprocessing View project current methods for phosphoprotein isolation and enrichment. J Chromatogr B 849:154–162

    Article  CAS  Google Scholar 

  121. Batalha IL, Lowe CR, Roque ACA (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30:100–110

    Article  CAS  Google Scholar 

  122. Batalha I, Roque A (2016) Phosphopeptide enrichment using various magnetic nanocomposites: an overview. In: von Stechow L (ed) Phospho-proteomics. Methods in molecular biology, vol 1355. Springer, New York, NY, pp 193–209

    Chapter  Google Scholar 

  123. Arrington JV, Hsu CC, Elder SG, Andy Tao W (2017) Recent advances in phosphoproteomics and application to neurological diseases. Analyst 142:4373–4387

    Article  CAS  Google Scholar 

  124. Byford MF (1991) Rapid and selective modification of phosphoserine residues catalysed by Ba2+ ions for their detection during peptide microsequencing. Biochem J 280(Pt 1):261–265

    Article  CAS  Google Scholar 

  125. Meyer HE, Hoffmann-Posorske E, Korte H, Heilmeyer LM (1986) Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett 204:61–66

    Article  CAS  Google Scholar 

  126. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382

    Article  CAS  Google Scholar 

  127. Goshe MB et al (2001) Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 73:2578–2586

    Article  CAS  Google Scholar 

  128. Rybak J-N, Scheurer SB, Neri D, Elia G (2004) Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics 4:2296–2299

    Article  CAS  Google Scholar 

  129. Adamczyk M, Gebler JC, Wu J (2001) Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. Rapid Commun Mass Spectrom 15:1481–1488

    Article  CAS  Google Scholar 

  130. van der Veken P et al (2005) Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. Chembiochem 6:2271–2280

    Article  CAS  Google Scholar 

  131. McLachlin DT, Chait BT (2003) Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem 75:6826–6836

    Article  CAS  Google Scholar 

  132. Thaler F et al (2003) A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem 376:366–373

    Article  CAS  Google Scholar 

  133. Qian WJ et al (2003) Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal Chem 75:5441–5450

    Article  CAS  Google Scholar 

  134. Knight ZA et al (2003) Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat Biotechnol 21:1047–1054

    Article  CAS  Google Scholar 

  135. Ahn YH, Ji ES, Lee JY, Cho K, Yoo JS (2007) Coupling of TiO(2)-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 21:3987–3994

    Article  CAS  Google Scholar 

  136. Ahn YH et al (2007) Protein phosphorylation analysis by site-specific arginine-mimic labeling in gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 370:77–86

    Article  CAS  Google Scholar 

  137. Stevens SM et al (2005) Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry. Rapid Commun Mass Spectrom 19:2157–2162

    Article  CAS  Google Scholar 

  138. Jalili PR, Sharma D, Ball HL (2007) Enhancement of ionization efficiency and selective enrichment of phosphorylated peptides from complex protein mixtures using a reversible poly-histidine tag. J Am Soc Mass Spectrom 18:1007–1017

    Article  CAS  Google Scholar 

  139. Jalili PR, Ball HL (2008) Novel reversible biotinylated probe for the selective enrichment of phosphorylated peptides from complex mixtures. J Am Soc Mass Spectrom 19:741–750

    Article  CAS  Google Scholar 

  140. Thompson AJ et al (2003) Characterization of protein phosphorylation by mass spectrometry using immobilized metal ion affinity chromatography with on-resin beta-elimination and Michael addition. Anal Chem 75:3232–3243

    Article  CAS  Google Scholar 

  141. Zhou H, Watts JD, Aebersold R (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    Article  CAS  Google Scholar 

  142. Bodenmiller B et al (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Mol BioSyst 3:275–286

    Article  CAS  Google Scholar 

  143. Tao WA et al (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nat Methods 2:591–598

    Article  CAS  Google Scholar 

  144. Hu F et al (2010) Expression and purification of an antimicrobial peptide by fusion with elastin-like polypeptides in Escherichia coli. Appl Biochem Biotechnol 160:2377–2387

    Article  CAS  Google Scholar 

  145. Yeboah A, Cohen RI, Rabolli C, Yarmush ML, Berthiaume F (2016) Elastin-like polypeptides: a strategic fusion partner for biologics. Biotechnol Bioeng 113:1617–1627

    Article  CAS  Google Scholar 

  146. Ullmann A (1984) One-step purification of hybrid proteins which have beta-galactosidase activity. Gene 29:27–31

    Article  CAS  Google Scholar 

  147. Dykes CW et al (1988) Expression of atrial natriuretic factor as a cleavable fusion protein with chloramphenicol acetyltransferase in Escherichia coli. Eur J Biochem 174:411–416

    Article  CAS  Google Scholar 

  148. Sjölander A et al (1997) The serum albumin-binding region of streptococcal protein G: a bacterial fusion partner with carrier-related properties. J Immunol Methods 201:115–123

    Article  Google Scholar 

  149. Anba J et al (1987) Expression vector promoting the synthesis and export of the human growth-hormone-releasing factor in Escherichia coli. Gene 53:219–226

    Article  CAS  Google Scholar 

  150. Tomme P et al (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B Biomed Sci Appl 715:283–296

    Article  CAS  Google Scholar 

  151. Luojing C, Ford C, Nikolov Z (1991) Adsorption to starch of a β-galactosidase fusion protein containing the starch-binding region of Aspergillus glucoamylase. Gene 99:121–126

    Article  Google Scholar 

  152. Ong E et al (1989) The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol 7:239–243

    Article  CAS  Google Scholar 

  153. Thorn KS, Naber N, Matuska M, Vale RD, Cooke R (2000) A novel method of affinity-purifying proteins using a bis-arsenical fluorescein. Protein Sci 9:213–217

    Article  CAS  Google Scholar 

  154. Chaga G, Bochkariov DE, Jokhadze GG, Hopp J, Nelson P (1999) Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 864:247–256

    Article  CAS  Google Scholar 

  155. Sassenfeld HM, Brewer SJ (1984) A polypeptide fusion designed por the purification of recombinant proteins. Nat Biotechnol 2:76–81

    Article  CAS  Google Scholar 

  156. Stubenrauch K, Bachmann A, Rudolph R, Lilie H (2000) Purification of a viral coat protein by an engineered polyionic sequence. J Chromatogr B Biomed Sci Appl 737:77–84

    Article  CAS  Google Scholar 

  157. Zhao JY, Ford CF, Glatz CE, Rougvie MA, Gendel SM (1990) Polyelectrolyte precipitation of beta-galactosidase fusions containing poly-aspartic acid tails. J Biotechnol 14:273–283

    Article  CAS  Google Scholar 

  158. Dalboge H, Dahl HHM, Pedersen J, Hansen JW, Christensen T (1987) A novel enzymatic method for production of authentic hgh from an escherichia coll produced hGH-precursor. Nat Biotechnol 5:161–164

    Article  Google Scholar 

  159. Persson M, Bergstrand MG, Bülow L, Mosbach K (1988) Enzyme purification by genetically attached polycysteine and polyphenylalanine affinity tails. Anal Biochem 172:330–337

    Article  CAS  Google Scholar 

  160. Schatz PJ (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Nat Biotechnol 11:1138–1143

    Article  CAS  Google Scholar 

  161. Lamla T, Stiege W, Erdmann VA (2002) An improved protein bioreactor: efficient product isolation during in vitro protein biosynthesis via affinity tag. Mol Cell Proteomics 1:466–471

    Article  CAS  Google Scholar 

  162. Smith JC et al (1984) Chemical synthesis and cloning of a poly(arginine)-coding gene fragment designed to aid polypeptide purification. Gene 32:321–327

    Article  CAS  Google Scholar 

  163. Goeddel DV et al (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76:106–110

    Article  CAS  Google Scholar 

  164. Moks T et al (1987) Expression of human insulin-like growth factor I in bacteria: use of optimized gene fusion vectors to facilitate protein purification. Biochemistry 26:5239–5244

    Article  CAS  Google Scholar 

  165. Huston JS et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by FCT/MEC (UID/Multi/04378/2019) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728). The authors thank FCT/MEC for the research fellowship SFRH/BPD/97585/2013 for A.S.P, SFRH/BD/64427/2009 for I.L.B. and A.M.G.C.D. for Junior Research contract under Sea2See project financed by FCT (PTDC/BII-BIO/28878/2017) and co-financed by ERDF under the PT2020 Partnership Agreement (LISBOA-01-0145-FEDER-028878).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cecília A. Roque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pina, A.S., Batalha, Í.L., Dias, A.M.G.C., Roque, A.C.A. (2021). Affinity Tags in Protein Purification and Peptide Enrichment: An Overview. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics