Skip to main content

Isolation and Glycomic Analysis of Trans-Golgi Network Vesicles in Plants

  • Protocol
  • First Online:
Plant Endosomes

Abstract

The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinclair R, Rosquete MR, Drakakaki G (2018) Post-Golgi trafficking and transport of Cell Wall components. Front Plant Sci 9:1784. https://doi.org/10.3389/fpls.2018.01784

    Article  PubMed  PubMed Central  Google Scholar 

  2. Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5(2):100–109. https://doi.org/10.1038/nrm1311

    Article  CAS  PubMed  Google Scholar 

  3. Rosquete MR, Drakakaki G (2018) Plant TGN in the stress response: a compartmentalized overview. Curr Opin Plant Biol 46:122–129. https://doi.org/10.1016/j.pbi.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Kanazawa T, Ueda T (2017) Exocytic trafficking pathways in plants: why and how they are redirected. New Phytol 215(3):952–957. https://doi.org/10.1111/nph.14613

    Article  PubMed  Google Scholar 

  5. LaMontagne ED, Heese A (2017) Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity. Curr Opin Plant Biol 40:114–121. https://doi.org/10.1016/j.pbi.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Pauly M, Keegstra K (2016) Biosynthesis of the plant Cell Wall matrix polysaccharide Xyloglucan. Annu Rev Plant Biol 67:235–259. https://doi.org/10.1146/annurev-arplant-043015-112222

    Article  CAS  PubMed  Google Scholar 

  7. Lampugnani ER, Khan GA, Somssich M, Persson S (2018) Building a plant cell wall at a glance. J Cell Sci 131(2). https://doi.org/10.1242/jcs.207373

  8. Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L, Vicre-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharides of the primary cell wall of higher plants. Front Plant Sci 3:79. https://doi.org/10.3389/fpls.2012.00079

    Article  PubMed  PubMed Central  Google Scholar 

  9. Worden N, Park E, Drakakaki G (2012) Trans-Golgi network-an intersection of trafficking cell wall components(f). J Integr Plant Biol 54(11):875–886. https://doi.org/10.1111/j.1744-7909.2012.01179.x

    Article  CAS  PubMed  Google Scholar 

  10. Kim SJ, Brandizzi F (2014) The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol 55(4):687–693. https://doi.org/10.1093/pcp/pct197

    Article  CAS  PubMed  Google Scholar 

  11. van de Meene AM, Doblin MS, Bacic A (2017) The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254(1):75–94. https://doi.org/10.1007/s00709-016-0952-4

    Article  CAS  PubMed  Google Scholar 

  12. Rosquete MR, Davis DJ, Drakakaki G (2018) The plant trans-Golgi network: not just a matter of distinction. Plant Physiol 176(1):187–198. https://doi.org/10.1104/pp.17.01239

    Article  CAS  PubMed  Google Scholar 

  13. Wattelet-Boyer V, Brocard L, Jonsson K, Esnay N, Joubes J, Domergue F, Mongrand S, Raikhel N, Bhalerao RP, Moreau P, Boutte Y (2016) Enrichment of hydroxylated C24- and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains. Nat Commun 7:12788. https://doi.org/10.1038/ncomms12788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uemura T, Suda Y, Ueda T, Nakano A (2014) Dynamic behavior of the trans-golgi network in root tissues of Arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55(4):694–703. https://doi.org/10.1093/pcp/pcu010

    Article  CAS  PubMed  Google Scholar 

  15. Reyes FC, Buono R, Otegui MS (2011) Plant endosomal trafficking pathways. Curr Opin Plant Biol 14(6):666–673. https://doi.org/10.1016/j.pbi.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  16. Contento AL, Bassham DC (2012) Structure and function of endosomes in plant cells. J Cell Sci 125(Pt 15):3511–3518. https://doi.org/10.1242/jcs.093559

    Article  CAS  PubMed  Google Scholar 

  17. Kim SJ, Brandizzi F (2016) The plant secretory pathway for the trafficking of cell wall polysaccharides and glycoproteins. Glycobiology 26(9):940–949. https://doi.org/10.1093/glycob/cww044

    Article  CAS  PubMed  Google Scholar 

  18. Park E, Drakakaki G (2014) Proteomics of endosomal compartments from plants case study: isolation of trans-Golgi network vesicles. Methods Mol Biol 1209:179–187. https://doi.org/10.1007/978-1-4939-1420-3_14

    Article  CAS  PubMed  Google Scholar 

  19. Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22(2):413–424. https://doi.org/10.1038/cr.2011.129

    Article  CAS  PubMed  Google Scholar 

  20. Parsons HT (2018) Preparation of highly enriched ER membranes using free-flow electrophoresis. Methods Mol Biol 1691:103–115. https://doi.org/10.1007/978-1-4939-7389-7_8

    Article  CAS  PubMed  Google Scholar 

  21. Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nat Protoc 7(9):1590–1607. https://doi.org/10.1038/nprot.2012.081

    Article  CAS  PubMed  Google Scholar 

  22. Obel N, Erben V, Schwarz T, Kuhnel S, Fodor A, Pauly M (2009) Microanalysis of plant cell wall polysaccharides. Mol Plant 2(5):922–932. https://doi.org/10.1093/mp/ssp046

    Article  CAS  PubMed  Google Scholar 

  23. Gunl M, Gille S, Pauly M (2010) OLIgo mass profiling (OLIMP) of extracellular polysaccharides. J Vis Exp 40. https://doi.org/10.3791/2046

  24. Voiniciuc C, Pauly M, Usadel B (2018) Monitoring polysaccharide dynamics in the plant Cell Wall. Plant Physiol 176(4):2590–2600. https://doi.org/10.1104/pp.17.01776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson CT, Wallace IS, Somerville CR (2012) Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc Natl Acad Sci U S A 109(4):1329–1334. https://doi.org/10.1073/pnas.1120429109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wallace ML, Anderson SJ, Mazumdar S, Kong L, Mulsant BH (2012) Incorporating temporal features of repeatedly measured covariates into tree-structured survival models. Biom J 54(2):181–196. https://doi.org/10.1002/bimj.201100013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang B, McClosky DD, Anderson CT, Chen G (2016) Synthesis of a suite of click-compatible sugar analogs for probing carbohydrate metabolism. Carbohydr Res 433:54–62. https://doi.org/10.1016/j.carres.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  28. Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152(2):787–796. https://doi.org/10.1104/pp.109.150128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoogenboom J, Berghuis N, Cramer D, Geurts R, Zuilhof H, Wennekes T (2016) Direct imaging of glycans in Arabidopsis roots via click labeling of metabolically incorporated azido-monosaccharides. BMC Plant Biol 16. https://doi.org/10.1186/s12870-016-0907-0

  30. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O'Shea B, Rossi R, Leoff C, Freshour G, Narra R, O'Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153(2):514–525. https://doi.org/10.1104/pp.109.151985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pattathil S, Avci U, Miller JS, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. Methods Mol Biol 908:61–72. https://doi.org/10.1007/978-1-61779-956-3_6

    Article  CAS  PubMed  Google Scholar 

  32. Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats W (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj J 25(1):37–48. https://doi.org/10.1007/s10719-007-9059-7

    Article  CAS  PubMed  Google Scholar 

  33. Pedersen HL, Fangel JU, McCleary B, Ruzanski C, Rydahl MG, Ralet MC, Farkas V, von Schantz L, Marcus SE, Andersen MC, Field R, Ohlin M, Knox JP, Clausen MH, Willats WG (2012) Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J Biol Chem 287(47):39429–39438. https://doi.org/10.1074/jbc.M112.396598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG (2015) Immunological approaches to biomass characterization and utilization. Front Bioeng Biotechnol 3:173. https://doi.org/10.3389/fbioe.2015.00173

    Article  PubMed  PubMed Central  Google Scholar 

  35. Worden N, Esteve VE, Domozych DS, Drakakaki G (2015) Using chemical genomics to study cell wall formation and cell growth in Arabidopsis thaliana and Penium margaritaceum. Methods Mol Biol 1242:23–39. https://doi.org/10.1007/978-1-4939-1902-4_2

    Article  CAS  PubMed  Google Scholar 

  36. Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, Duan D, Peralta AG, Domozych DS, Hahn MG, Drakakaki G (2019) A hybrid approach enabling large-scale Glycomic analysis of post-Golgi vesicles reveals a transport route for polysaccharides. Plant Cell 31(3):627–644. https://doi.org/10.1105/tpc.18.00854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okekeogbu IO, Pattathil S, Gonzalez Fernandez-Nino SM, Aryal UK, Penning BW, Lao J, Heazlewood JL, Hahn MG, McCann MC, Carpita NC (2019) Glycome and proteome components of Golgi membranes are common between two angiosperms with distinct cell-wall structures. Plant Cell 31(5):1094–1112. https://doi.org/10.1105/tpc.18.00755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parsons HT, Stevens TJ, McFarlane HE, Vidal-Melgosa S, Griss J, Lawrence N, Butler R, Sousa MML, Salemi M, Willats WGT, Petzold CJ, Heazlewood JL, Lilley KS (2019) Separating Golgi proteins from cis to trans reveals underlying properties of cisternal localization. Plant Cell 31(9):2010–2034. https://doi.org/10.1105/tpc.19.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. R Development Core Team. (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-projectorg

  40. Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N (2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142(4):1480–1492. https://doi.org/10.1104/pp.106.086363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272(7):4327–4334

    Article  CAS  Google Scholar 

  42. da Silva CA, Marty-Mazars D, Bassham DC, Sanderfoot AA, Marty F, Raikhel NV (1997) The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell 9(4):571–582

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF MCB 1818219 award to GD, and the USDA Hatch CA-D-PLS-2132-H to G.D. G.R was partially supported by the China Scholarship Council. The generation of the CCRC series of the used plant cell wall glycan-directed antibodies was supported by the NSF (DBI-0423683 and IOS-0923992) awards to MGH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Drakakaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ren, G. et al. (2020). Isolation and Glycomic Analysis of Trans-Golgi Network Vesicles in Plants. In: Otegui, M. (eds) Plant Endosomes. Methods in Molecular Biology, vol 2177. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0767-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0767-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0766-4

  • Online ISBN: 978-1-0716-0767-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics