Skip to main content

Immunological Approaches to Plant Cell Wall and Biomass Characterization: Glycome Profiling

  • Protocol
  • First Online:
Biomass Conversion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 908))

Abstract

The native complexity of plant cell walls makes research on them challenging. Hence, it is advantageous to have a diversity of tools that can be used to analyze and characterize plant cell walls. In this chapter, we describe one of two immunological approaches that can be employed for screening of plant cell wall/biomass materials from diverse plants and tissues. This approach, Glycome Profiling, lends itself well to moderate to high-throughput screening of plant cell wall/biomass samples. Glycome Profiling is being further optimized to reduce the amount of sample required for the analysis, and to improve the sensitivity and throughput of the assay. We are optimistic that Glycome Profiling will prove to be a broadly applicable experimental approach that will find increasing application to a wide variety of studies on plant cell wall/biomass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  CAS  Google Scholar 

  2. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  3. Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel ME, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  4. Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    Article  CAS  Google Scholar 

  5. McCann MC, Knox JP (2011) Plant cell wall biology: polysaccharides in architectural and developmental contexts. In: Ulvskov P (ed) Plant Polysaccharides: biosynthesis and bioengineering. Annu Plant Rev 41: 343–366

    Google Scholar 

  6. York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis - which end is up? Curr Opin Plant Biol 11:258–265

    Article  CAS  Google Scholar 

  7. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  8. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  Google Scholar 

  9. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  Google Scholar 

  10. Lee KJ, Marcus SE, Knox JP (2011) Cell wall biology: perspectives from cell wall imaging. Mol Plant 4:212–219

    Article  CAS  Google Scholar 

  11. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153:514–525

    Article  CAS  Google Scholar 

  12. Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG (1994) Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal α-(1  →  2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710

    Article  CAS  Google Scholar 

  13. Marcus SE, Blake AW, Benians TA, Lee KJ, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WG, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203

    Article  CAS  Google Scholar 

  14. Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WG, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60

    Article  Google Scholar 

  15. Freshour G, Bonin CP, Reiter WD, Albersheim P, Darvill AG, Hahn MG (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol 131:1602–1612

    Article  CAS  Google Scholar 

  16. Kong Y, Zhou G, Yin Y, Xu Y, Pattathil S, Hahn MG (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155:1791–1805

    Article  CAS  Google Scholar 

  17. Lee SJ, Warnick TA, Pattathil S, Alvelo-Maurosa JG, Serapiglia MJ, McCormick H, Brown V, Young NF, Schnell DJ, Smart LB, Hahn MG, Pedersen JF, Leschine SB, Hazen SP (2012) Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels 5:5

    Article  CAS  Google Scholar 

  18. DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339

    Article  CAS  Google Scholar 

  19. Ahlgren PA, Goring DA (1971) Removal of wood components during chlorite delignification of black spruce. Can J Chem 49:1272–1275

    Article  CAS  Google Scholar 

  20. Dubois M, Gilles DA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  21. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC (2005) Carbohydrate analysis by a phenol-sulphuric acid method in microplate format. Anal Biochem 339:69–72

    Article  CAS  Google Scholar 

  22. R Development Core Team (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org

Download references

Acknowledgements

Research in our laboratory on immunological approaches to biomass characterization is supported by the Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC) funded by grant DE-AC05-00OR22725. Generation of the CCRC series of plant glycan-directed mAbs used in this work was supported by the NSF Plant Genome Program (DBI-0421683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pattathil, S., Avci, U., Miller, J.S., Hahn, M.G. (2012). Immunological Approaches to Plant Cell Wall and Biomass Characterization: Glycome Profiling. In: Himmel, M. (eds) Biomass Conversion. Methods in Molecular Biology, vol 908. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-956-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-956-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-955-6

  • Online ISBN: 978-1-61779-956-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics