Skip to main content

Extraction of Small RNAs by Titanium Dioxide Nanofibers

  • Protocol
  • First Online:
RNA Abundance Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2170))

  • 1133 Accesses

Abstract

MicroRNAs (miRNAs) are small RNAs, that bind to mRNA targets and regulate their translation. Functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ either silica columns or TRIzol reagent, but these approaches afford low recovery for small RNAs, possibly due to their short strand lengths. Here, we describe the fabrication of titanium dioxide nanofibers and the optimal extraction conditions to improve miRNA recovery from biological buffers, cell lysate, and serum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  CAS  Google Scholar 

  2. Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    Article  CAS  Google Scholar 

  3. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  Google Scholar 

  4. Alipoor SD, Adcock IM, Garssen J et al (2016) The roles of miRNAs as potential biomarkers in lung diseases. Eu J Pharmacol 791:395–404

    Article  CAS  Google Scholar 

  5. Bekris LM, Leverenz JB (2015) The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener Dis Manag 5:61–74

    Article  Google Scholar 

  6. Zhao Z, Moley KH, Gronowski AM (2013) Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem 46:953–960

    Article  CAS  Google Scholar 

  7. Bielicka-Daszkiewicz K, Voelkel A (2009) Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta 80:614–621

    Article  CAS  Google Scholar 

  8. Cao Y, Griffith JF, Weisberg SB (2016) The next-generation PCR-based quantification method for ambient waters: digital PCR. Methods Mol Biol 1452:113–130

    Article  CAS  Google Scholar 

  9. Al-Soud WA, Rådström P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485–493

    Article  CAS  Google Scholar 

  10. Duy J, Koehler JW, Honko AN et al (2015) Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics 16:95

    Article  Google Scholar 

  11. Rio DC, Ares M, Hannon GJ et al (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot5439

  12. Auffinger P, Bielecki L, Westhof E (2004) Anion binding to nucleic acids. Structure 12:379–388

    Article  CAS  Google Scholar 

  13. Simões AES, Pereira DM, Amaral JD et al (2013) Efficient recovery of proteins from multiple source samples after TRIzol(®) or TRIzol(®)LS RNA extraction and long-term storage. BMC Genomics 14:181

    Article  Google Scholar 

  14. Thingholm TE, Larsen MR (2016) The use of titanium dioxide for selective enrichment of phosphorylated peptides. Methods Mol Biol 1355:135–146

    Article  CAS  Google Scholar 

  15. Eriksson AIK, Bartsch M, Bergquist J et al (2013) On-target titanium dioxide-based enrichment for characterization of phosphorylations in the adenovirus pIIIa protein. J Chromatogr A 1317:105–109

    Article  CAS  Google Scholar 

  16. Wakabayashi M, Kyono Y, Sugiyama N et al (2015) Extended coverage of singly and multiply phosphorylated peptides from a single titanium dioxide microcolumn. Anal Chem 87:10213–10221

    Article  CAS  Google Scholar 

  17. Piovesana S, Capriotti AL, Cavaliere C et al (2016) New magnetic graphitized carbon black tio2 composite for phosphopeptide selective enrichment in shotgun phosphoproteomics. Anal Chem 88:12043–12050

    Article  CAS  Google Scholar 

  18. Li Q, Ning Z, Tang J et al (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  CAS  Google Scholar 

  19. Zhang X, Wang F, Li B et al (2014) Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 30:839–845

    Article  CAS  Google Scholar 

  20. Mondal K, Ali MA, Agrawal VV et al (2014) Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. ACS Appl Mater Interfaces 6:2516–2527

    Article  CAS  Google Scholar 

  21. Madhugiri S, Sun B, Smirniotis PG et al (2004) Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater 69:77–83

    Article  CAS  Google Scholar 

  22. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwan Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jimenez, L.A., Zhong, W. (2021). Extraction of Small RNAs by Titanium Dioxide Nanofibers. In: Jin, H., Kaloshian, I. (eds) RNA Abundance Analysis . Methods in Molecular Biology, vol 2170. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0743-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0743-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0742-8

  • Online ISBN: 978-1-0716-0743-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics