Skip to main content

The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

Titanium dioxide (TiO2) has very high affinity for phosphopeptides and in recent years it has become one of the most popular methods for phosphopeptide enrichment from complex biological samples. Peptide loading onto TiO2 resin in a highly acidic environment in the presence of 2,5-dihydroxybenzoic acid (DHB), phthalic acid, lactic acid, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding of non-phosphorylated peptides. The phosphopeptides bound to the TiO2 are subsequently eluted from the chromatographic material using an alkaline buffer. TiO2 chromatography is extremely tolerant towards most buffers used in biological experiments, highly robust and as such it has become the method of choice in large-scale phosphoproteomics. Here we describe a batch mode protocol for phosphopeptide enrichment using TiO2 chromatographic material followed by desalting and concentration of the sample by reversed phase micro-columns prior to downstream MS and LC-MS/MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Topoglidis E, Cass AEG, Gilardi G, Sadeghi S, Beaumont N, Durrant JR (1998) Protein adsorption on nanocrystalline TiO2 films: an immobilization strategy for bioanalytical devices. Anal Chem 70:5111–5113

    Article  CAS  PubMed  Google Scholar 

  2. Connor PA, Dobson KD, McQuillan J (1999) Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 15:2402–2408

    Article  CAS  Google Scholar 

  3. Connor PA, Mcquillan AJ (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15:2916–2921

    Article  CAS  Google Scholar 

  4. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20:565

    Article  CAS  PubMed  Google Scholar 

  5. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  6. Kuroda I, Shintani Y, Motokawa M, Abe S, Furuno M (2004) Phosphopeptide-selective column-switching RP-HPLC with a titania precolumn. Anal Sci 20:1313–1319

    Article  CAS  PubMed  Google Scholar 

  7. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  8. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935

    Article  CAS  PubMed  Google Scholar 

  9. Jensen SS, Larsen MR (2007) Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Comm Mass Spectrom 21:3635

    Article  CAS  Google Scholar 

  10. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC - a phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides. Mol Cell Proteom 7(4):661–671

    Article  CAS  Google Scholar 

  11. Engholm-Keller K, Birck P, Storling J, Pociot F, Mandrup-Poulsen T, Larsen MR (2012) TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteomics 75:5749–5761

    Article  CAS  PubMed  Google Scholar 

  12. Engholm-Keller K, Hansen TA, Palmisano G, Larsen MR (2011) Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling. J Proteome Res 10:5383–5397

    Article  CAS  PubMed  Google Scholar 

  13. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Zhang C, Campbell JL, Zhang H, Yeung KK, Han VK, Lajoie GA (2005) Formation of phosphopeptide-metal ion complexes in liquid chromatography/electrospray mass spectrometry and their influence on phosphopeptide detection. Rapid Commun Mass Spectrom 19:2747–2756

    Article  CAS  PubMed  Google Scholar 

  15. Pinkse MW, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJ (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J Proteome Res 7:687–697

    Article  CAS  PubMed  Google Scholar 

  16. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648

    Article  CAS  PubMed  Google Scholar 

  17. McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7:971–980

    Article  CAS  PubMed  Google Scholar 

  18. Engholm-Keller K, Larsen MR (2011) Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds--applications in acidic modification-specific proteomics. J Proteomics 75:317–328

    Article  CAS  PubMed  Google Scholar 

  19. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6:1778–1787

    Article  CAS  PubMed  Google Scholar 

  20. Calvano CD, Jensen ON, Zambonin CG (2009) Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem 394:1453–1461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish Natural Science and Medical Research Councils (grant no. 10-082195 (T.E.T)) and the Lundbeck Foundation (M.R.L—Junior Group Leader Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin R. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thingholm, T.E., Larsen, M.R. (2016). The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics