Skip to main content

Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems

  • Protocol
  • First Online:
RNA Tagging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2166))

Abstract

The ability to monitor the behavior of specific genomic loci in living cells can offer tremendous opportunities for deciphering the molecular basis driving cellular physiology and disease evolution. Toward this goal, clustered regularly interspersed short palindromic repeat (CRISPR)-based imaging systems have been developed, with tagging of either the nuclease-deactivated mutant of the CRISPR-associated protein 9 (dCas9) or the CRISPR single-guide RNA (sgRNA) with fluorescent protein (FP) molecules currently the major strategies for labeling. Recently, we have demonstrated the feasibility of tagging the sgRNA with molecular beacons, a class of small molecule dye-based, fluorogenic oligonucleotide probes, and demonstrated that the resulting system, termed CRISPR/MB, could be more sensitive and quantitative than conventional approaches employing FP reporters in detecting single telomere loci. In this chapter, we describe detailed protocols for the synthesis of CRISPR/MB, as well as its applications for imaging single telomere and centromere loci in live mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misteli T (2013) The cell biology of genomes: bringing the double helix to life. Cell 152(6):1209–1212. https://doi.org/10.1016/j.cell.2013.02.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800. https://doi.org/10.1016/j.cell.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  3. Chen B, Guan J, Huang B (2016) Imaging specific genomic DNA in living cells. Annu Rev Biophys 45:1–23. https://doi.org/10.1146/annurev-biophys-062215-010830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li T, Meng YQ, Yao RY, Han H, Wu L, Zhou YN, Li ZQ, Zhang YF, Fu LG (2019) The associations between left-hand digit ratio (2D:4D) and puberty characteristics among Chinese girls. Early Hum Dev 130:22–26. https://doi.org/10.1016/j.earlhumdev.2019.01.007

    Article  PubMed  Google Scholar 

  5. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569–573. https://doi.org/10.1038/nature13579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477–1481. https://doi.org/10.1126/science.aab1452

    Article  CAS  PubMed  Google Scholar 

  9. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67. https://doi.org/10.1038/nature13011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491. https://doi.org/10.1016/j.cell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shao S, Chang L, Sun Y, Hou Y, Fan X, Sun Y (2017) Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00268

  15. Ye H, Rong Z, Lin Y (2017) Live cell imaging of genomic loci using dCas9-SunTag system and a bright fluorescent protein. Protein Cell 8(11):853–855. https://doi.org/10.1007/s13238-017-0460-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44(9):e86. https://doi.org/10.1093/nar/gkw066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707. https://doi.org/10.1038/ncomms11707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725. https://doi.org/10.1038/ncomms14725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang S, Su JH, Zhang F, Zhuang X (2016) An RNA-aptamer-based two-color CRISPR labeling system. Sci Rep 6:26857. https://doi.org/10.1038/srep26857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34(5):528–530. https://doi.org/10.1038/nbt.3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018) A pathway for mitotic chromosome formation. Science 359(6376). https://doi.org/10.1126/science.aao6135

  22. Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H (2016) Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res 26(2):254–257. https://doi.org/10.1038/cr.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma H, Tu LC, Naseri A, Chung YC, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15(11):928–931. https://doi.org/10.1038/s41592-018-0174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214(5):529–537. https://doi.org/10.1083/jcb.201604115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng W, Shi X, Tjian R, Lionnet T, Singer RH (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112(38):11870–11875. https://doi.org/10.1073/pnas.1515692112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350(6262):823–826. https://doi.org/10.1126/science.aac6572

    Article  CAS  PubMed  Google Scholar 

  27. Wu X, Mao S, Yang Y, Rushdi MN, Krueger CJ, Chen AK (2018) A CRISPR/molecular beacon hybrid system for live-cell genomic imaging. Nucleic Acids Res 46(13):e80. https://doi.org/10.1093/nar/gky304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma Y, Wang M, Li W, Zhang Z, Zhang X, Wu G, Tan T, Cui Z, Zhang XE (2017) Live visualization of HIV-1 proviral DNA using a dual-color-labeled CRISPR system. Anal Chem 89(23):12896–12901. https://doi.org/10.1021/acs.analchem.7b03584

    Article  CAS  PubMed  Google Scholar 

  29. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  30. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  31. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  32. Zhao D, Yang Y, Qu N, Chen M, Ma Z, Krueger CJ, Behlke MA, Chen AK (2016) Single-molecule detection and tracking of RNA transcripts in living cells using phosphorothioate-optimized 2’-O-methyl RNA molecular beacons. Biomaterials 100:172–183. https://doi.org/10.1016/j.biomaterials.2016.05.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key R&D Program of China (2016YFA0501603), the National Natural Science Foundation of China (Nos. 31771583 and 81371613), the Beijing Natural Science Foundation (7162114), and China’s 1000 Young Talent Award program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony K. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, X., Ying, Y., Mao, S., Krueger, C.J., Chen, A.K. (2020). Live-Cell Imaging of Genomic Loci Using CRISPR/Molecular Beacon Hybrid Systems. In: Heinlein, M. (eds) RNA Tagging. Methods in Molecular Biology, vol 2166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0712-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0712-1_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0711-4

  • Online ISBN: 978-1-0716-0712-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics