Skip to main content

Bacteriophage Control for Pseudomonas aeruginosa Biofilm Formation and Eradication

  • Protocol
  • First Online:
Experimental Protocols in Biotechnology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Microbial biofilms are a type of cell growth observed on biotic or abiotic substrates, with altered gene expression profile from its free-living counterparts, encased in an exopolymeric substance fortification that protects its residents from different stressors. It is now estimated that in almost all niches, microorganisms prefer to exist in a biofilm mode than as free-living cells. The study of biofilms for understanding microbial nature has hence become one of the mainstay assays in a microbiology laboratory. Biofilms show great diversity in their shape, structure, morphology, metabolic physiology as well as genetic complexity based on the resident flora and form the basis of microbial resistance to biocontrol agents such as antimicrobial compounds. Bacteriophages are emerging as effective and safe antibacterial alternative strategies in an era of rapidly emerging antibiotic resistance. Basic biofilm assay protocols that can be performed in any microbiology laboratory are reported along with the use of bacteriophages as biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lappin-Scott H, Burton S, Stoodley P (2014) Revealing a world of biofilms—the pioneering research of Bill Costerton. Nat Rev Microbiol 12:781–787. https://doi.org/10.1038/nrmicro3343

    Article  CAS  PubMed  Google Scholar 

  2. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. https://doi.org/10.1128/cmr.15.2.167-193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schlafer S, Meyer RL (2016) Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 38:50–59. https://doi.org/10.1016/j.mimet.2016.03.002

    Article  Google Scholar 

  4. James SA, Powell LC, Wright CJ (2016) Atomic force microscopy of biofilms-imaging, interactions, and mechanics. In: Dhanasekaran D (ed) Microbial biofilms—importance and applications. Intech Open, London. https://doi.org/10.57772/63312

    Chapter  Google Scholar 

  5. Yang L, Hu Y, Liu Y et al (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–1717. https://doi.org/10.1111/j.1462-2920.2011.02503.x

    Article  CAS  PubMed  Google Scholar 

  6. Carniello V, Peterson BW, van der Mei HC, Busscher HJ (2018) Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interf Sci 261:1–14. https://doi.org/10.1016/J.CIS.2018.10.005

    Article  CAS  Google Scholar 

  7. Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005. https://doi.org/10.3390/ijms141020983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001

    Article  CAS  Google Scholar 

  9. Berne C, Ducret A, Hardy GG, Brun YV (2015) Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr 3:1–46. https://doi.org/10.1128/microbiolspec.MB-0018-2015

    Article  CAS  Google Scholar 

  10. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7. https://doi.org/10.3389/fcimb.2015.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Acemel RD, Govantes F, Cuetos A (2018) Computer simulation study of early bacterial biofilm development. Sci Rep 8:5340. https://doi.org/10.1038/s41598-018-23524-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  13. Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671. https://doi.org/10.1111/j.1574-6976.2000.tb00565.x

    Article  CAS  PubMed  Google Scholar 

  14. Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in pseudomonas syringae. Mol Plant-Microbe Interact 18:682–693. https://doi.org/10.1094/MPMI-18-0682

    Article  CAS  PubMed  Google Scholar 

  15. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:11. https://doi.org/10.1101/cshperspect.a012427

    Article  CAS  Google Scholar 

  16. Papenfort K, Bassler BL (2016) Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. https://doi.org/10.1038/nrmicro.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218. https://doi.org/10.1177/0022034509359403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westerhoff HV, Brooks AN, Simeonidis E et al (2014) Macromolecular networks and intelligence in microorganisms. Front Microbiol 5:379. https://doi.org/10.3389/fmicb.2014.00379

    Article  PubMed  PubMed Central  Google Scholar 

  19. Majumdar S, Pal S (2017) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun Signal 11(3):281–284. https://doi.org/10.1007/s12079-017-0394-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blair JMA, Webber MA, Baylay AJ et al (2014) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Tu F, Gui Z et al (2013) Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol 53:163–167. https://doi.org/10.1007/s12088-013-0370-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abedon ST (2016) Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett 363(3). https://doi.org/10.1093/femsle/fnv246

  23. Perera MN, Abuladze T, Li M et al (2015) Bacteriophage cocktail significantly reduces or eliminates Listeria monocytogenes contamination on lettuce, apples, cheese, smoked salmon and frozen foods. Food Microbiol 52:42–48. https://doi.org/10.1016/j.fm.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  24. Nanda AM, Thormann K, Frunzke J (2015) Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 197:410–419. https://doi.org/10.1128/JB.02230-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szafrański SP, Winkel A, Stiesch M (2017) The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 250:29–44. https://doi.org/10.1016/j.jbiotec.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  26. Górski A, Międzybrodzki R, Weber-Dąbrowska B et al (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515. https://doi.org/10.3389/fmicb.2016.01515

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bárdy P, Pantůček R, Benešík M, Doškař J (2016) Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 121:618–633. https://doi.org/10.1111/jam.13207

    Article  PubMed  Google Scholar 

  28. Ackermann H-W, Węgrzyn G (2014) General characteristics of bacteriophages. In: Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 43–56

    Google Scholar 

  29. Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21(1):85–99. https://doi.org/10.2174/1381612820666140905112311

    Article  CAS  PubMed  Google Scholar 

  30. Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28(3):265–274. https://doi.org/10.1007/s40259-013-0081-y

    Article  CAS  PubMed  Google Scholar 

  31. Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases—novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590. https://doi.org/10.1046/j.1365-2672.1998.853541.x

    Article  CAS  PubMed  Google Scholar 

  32. Pires DP, Oliveira H, Melo LDR et al (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151. https://doi.org/10.1007/s00253-015-7247-0

    Article  CAS  PubMed  Google Scholar 

  33. Latka A, Maciejewska B, Majkowska-Skrobek G et al (2017) Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol 101:3103–3119. https://doi.org/10.1007/s00253-017-8224-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Motlagh AM, Bhattacharjee AS, Goel R (2016) Biofilm control with natural and genetically-modified phages. World J Microbiol Biotechnol 32:67. https://doi.org/10.1007/s11274-016-2009-4

    Article  CAS  PubMed  Google Scholar 

  35. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114. https://doi.org/10.4161/bact.1.2.14590

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sagar SS, Kumar R, Kaistha SD (2017) Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng 42:95–103. https://doi.org/10.1007/s13369-016-2194-3

    Article  CAS  Google Scholar 

  37. Azeredo J, Azevedo NF, Briandet R et al (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  PubMed  Google Scholar 

  38. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 47:1–2. https://doi.org/10.3791/2437

    Article  Google Scholar 

  39. Merritt JH, Kadouri DE, O’Toole GA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol, Chapter 1, Unit 1B.1. https://doi.org/10.1002/9780471729259.mc01b01s00

  40. Singh D, Kaistha SD (2018) Multiple antibiotic resistance and biofilm formation of catheter associated urinary tract infection (CAUTI) causing microorganisms. J Bacteriol Mycol 6. https://doi.org/10.15406/jbmoa.2018.06.00208

  41. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14. https://doi.org/10.2174/138920110790725311

    Article  CAS  PubMed  Google Scholar 

  42. Knezevic P, Petrovic O (2008) A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J Microbiol Methods 74:114–118. https://doi.org/10.1016/j.mimet.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  43. Xie Y, Wahab L, Gill JJ (2018) Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses 10:189. https://doi.org/10.3390/v10040189

    Article  CAS  PubMed Central  Google Scholar 

  44. Grela E, Kozłowska J, Grabowiecka A (2018) Current methodology of MTT assay in bacteria – a review. Acta Histochem 120:303–311. https://doi.org/10.1016/J.ACTHIS.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  45. Hundie GB, Woldemeskel D, Gessesse A (2016) Evaluation of direct colorimetric MTT assay for rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. PLoS One 11:e0169188. https://doi.org/10.1371/journal.pone.0169188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Atlas R (2010) Handbook of microbiological media, 4th edn. CRC Press, Boca Raton, Florida

    Google Scholar 

  47. Kropinski AM, Mazzocco A, Waddell TE et al (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501:69–76. https://doi.org/10.1007/978-1-60327-164-6_7

    Article  CAS  PubMed  Google Scholar 

  48. Santos SB, Carvalho CM, Sillankorva S et al (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148. https://doi.org/10.1186/1471-2180-9-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kauffman KM, Polz MF (2018) Streamlining standard bacteriophage methods for higher throughput. Methods 5:159–172. https://doi.org/10.1016/J.MEX.2018.01.007

    Article  Google Scholar 

  50. Benov L (2019) Effect of growth media on the MTT colorimetric assay in bacteria. PLoS One 14:e0219713. https://doi.org/10.1371/journal.pone.0219713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from University Grants Commission, New Delhi 357996 (VK) and CSJMU Minor Research Project Grant CSJMU/CDC/143/2018 (SDK).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Umrao, P.D., Kumar, V., Sagar, S.S., Kaistha, S.D. (2020). Bacteriophage Control for Pseudomonas aeruginosa Biofilm Formation and Eradication. In: Gupta, N., Gupta, V. (eds) Experimental Protocols in Biotechnology. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0607-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0607-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0606-3

  • Online ISBN: 978-1-0716-0607-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics