Skip to main content

Synthesis and Application of Collagens for Assembling a Corneal Implant

  • Protocol
  • First Online:
Corneal Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2145))

Abstract

Recombinant or artificial designer collagens have developed to a point where they are viable candidates for replacing extracted animal collagens in regenerative medicine applications. Biomimetic corneas made have shown promise as replacements for human donor corneas, and have previously been fabricated from several different collagens or collagen-like peptides (CLPs). Prokaryotic expression systems allow for cheap, rapid, gram scale production of collagens/CLPs. Here, we describe a procedure for production of collagen-like peptides for the manufacture of a biomimetic cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Montes GS, Junqueira LC (1982) Biology of collagen. Rev Can Biol Exp 41(2):143–156

    CAS  PubMed  Google Scholar 

  2. Brodsky B, Persikov AV (2005) Molecular structure of the collagen triple helix. In: Advances in protein chemistry, vol 70. Academic Press, Cambridge, pp 301–339

    Google Scholar 

  3. Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(1):1. https://doi.org/10.1042/bj3160001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Islam MM, Buznyk O, Reddy JC, Pasyechnikova N, Alarcon EI, Hayes S, Lewis P, Fagerholm P, He C, Iakymenko S, Liu W, Meek KM, Sangwan VS, Griffith M (2018) Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. NPJ Regen Med 3:2. https://doi.org/10.1038/s41536-017-0038-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeugolis DI, Paul RG, Attenburrow G (2008) Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J Biomed Mater Res A 86A(4):892–904. https://doi.org/10.1002/jbm.a.31694

    Article  CAS  Google Scholar 

  6. Lynn AK, Yannas IV, Bonfield W (2004) Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater 71B(2):343–354. https://doi.org/10.1002/jbm.b.30096

    Article  CAS  Google Scholar 

  7. Jenkins CL, Bretscher LE, Guzei IA, Raines RT (2003) Effect of 3-hydroxyproline residues on collagen stability. J Am Chem Soc 125(21):6422–6427. https://doi.org/10.1021/ja034015j

    Article  CAS  PubMed  Google Scholar 

  8. Yu Z, An B, Ramshaw JAM, Brodsky B (2014) Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 186(3):451–461. https://doi.org/10.1016/j.jsb.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng YY, Yoshizumi A, Danon SJ, Glattauer V, Prokopenko O, Mirochnitchenko O, Yu Z, Inouye M, Werkmeister JA, Brodsky B, Ramshaw JA (2010) A streptococcus pyogenes derived collagen-like protein as a non-cytotoxic and non-immunogenic cross-linkable biomaterial. Biomaterials 31(10):2755–2761. https://doi.org/10.1016/j.biomaterials.2009.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An B, Kaplan DL, Brodsky B (2014) Engineered recombinant bacterial collagen as an alternative collagen-based biomaterial for tissue engineering. Front Chem 2(40). https://doi.org/10.3389/fchem.2014.00040

  11. Cosgriff-Hernandez E, Hahn MS, Russell B, Wilems T, Munoz-Pinto D, Browning MB, Rivera J, Hook M (2010) Bioactive hydrogels based on designer collagens. Acta Biomater 6(10):3969–3977. https://doi.org/10.1016/j.actbio.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  12. Xu C, Yu Z, Inouye M, Brodsky B, Mirochnitchenko O (2010) Expanding the family of collagen proteins: recombinant bacterial collagens of varying composition form triple-helices of similar stability. Biomacromolecules 11(2):348–356. https://doi.org/10.1021/bm900894b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fallas JA, Gauba V, Hartgerink JD (2009) Solution structure of an abc collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J Biol Chem 284(39):26851–26859. https://doi.org/10.1074/jbc.M109.014753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nassa M, Anand P, Jain A, Chhabra A, Jaiswal A, Malhotra U, Rani V (2012) Analysis of human collagen sequences. Bioinformation 8(1):26–33. https://doi.org/10.6026/97320630008026

  16. Boudko SP, Engel J, Bächinger HP (2012) The crucial role of trimerization domains in collagen folding. Int J Biochem Cell Biol 44(1):21–32. https://doi.org/10.1016/j.biocel.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  17. Sundaramoorthy M, Meiyappan M, Todd P, Hudson BG (2002) Crystal structure of nc1 domains. Structural basis for type iv collagen assembly in basement membranes. J Biol Chem 277(34):31142–31153. https://doi.org/10.1074/jbc.M201740200

    Article  CAS  PubMed  Google Scholar 

  18. Paramonov SE, Gauba V, Hartgerink JD (2005) Synthesis of collagen-like peptide polymers by native chemical ligation. Macromolecules 38(18):7555–7561. https://doi.org/10.1021/ma0514065

    Article  CAS  Google Scholar 

  19. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perala M, Hamalainen ER, Jarvinen M, Polarek J (2003) Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev 55(12):1547–1567

    Article  CAS  Google Scholar 

  20. Bagley D (2019) Declaration of source material - vitricol. https://www.advancedbiomatrix.com/wp-content/uploads/2011/09/Declaration-of-Source-Material-9-3-15.pdf. Accessed 10 June 2019

  21. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type iii procollagen in cocoons. Nat Biotechnol 21(1):52–56. https://doi.org/10.1038/nbt771

    Article  CAS  PubMed  Google Scholar 

  22. Shoseyov O, Posen Y, Grynspan F (2014) Human collagen produced in plants: more than just another molecule. Bioengineered 5(1):49–52. https://doi.org/10.4161/bioe.26002

    Article  PubMed  Google Scholar 

  23. Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M (2010) Production of a non-triple helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 106(6):860–870. https://doi.org/10.1002/bit.22752

    Article  CAS  PubMed  Google Scholar 

  24. O’Leary LER, Fallas JA, Bakota EL, Kang MK, Hartgerink JD (2011) Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 3:821. https://doi.org/10.1038/nchem.1123. https://www.nature.com/articles/nchem.1123#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  25. Islam MM, Ravichandran R, Olsen D, Ljunggren MK, Fagerholm P, Lee CJ, Griffith M, Phopase J (2016) Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv 6(61):55745–55749. https://doi.org/10.1039/C6RA08895C

    Article  CAS  Google Scholar 

  26. Samarawickrama C, Samanta A, Liszka A, Fagerholm P, Buznyk O, Griffith M, Allan B (2018) Collagen-based fillers as alternatives to cyanoacrylate glue for the sealing of large corneal perforations. Cornea 37(5):609–616. https://doi.org/10.1097/ico.0000000000001459

    Article  PubMed  Google Scholar 

  27. D'Este M, Eglin D, Alini M (2014) A systematic analysis of dmtmm vs edc/nhs for ligation of amines to hyaluronan in water. Carbohydr Polym 108:239–246. https://doi.org/10.1016/j.carbpol.2014.02.070

    Article  CAS  PubMed  Google Scholar 

  28. Voytas D (2000) Agarose gel electrophoresis. Curr Protoc Mol Biol 51(1):2.5A.1–2.5A.9. https://doi.org/10.1002/0471142727.mb0205as51

    Article  Google Scholar 

  29. Islam MM, Griffith M, Merrett K (2013) Fabrication of a human recombinant collagen-based corneal substitute using carbodiimide chemistry. Methods Mol Biol 1014:157–164. https://doi.org/10.1007/978-1-62703-432-6_10

    Article  CAS  PubMed  Google Scholar 

  30. Plasmid cloning by restriction enzyme digest. addgene. https://www.addgene.org/protocols/subcloning/. Accessed 10 June 2019

  31. Struhl K (1991) Subcloning of DNA fragments. Curr Protoc Mol Biol 13(1):3.16.11–13.16.12. https://doi.org/10.1002/0471142727.mb0316s13

    Article  Google Scholar 

  32. Diagnostic restriction digest (2018) addgene. https://www.addgene.org/protocols/diagnostic-digest/. Accessed 10 June 2019

  33. Gallagher SR (2006) One-dimensional sds gel electrophoresis of proteins. Curr Protoc Mol Biol 75(1):10.12.11–10.12A.37. https://doi.org/10.1002/0471142727.mb1002as75

    Article  Google Scholar 

  34. Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW (2015) Detoxifying escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Factories 14(1):57. https://doi.org/10.1186/s12934-015-0241-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edin, E., Simpson, F., Griffith, M. (2020). Synthesis and Application of Collagens for Assembling a Corneal Implant. In: Ahearne, M. (eds) Corneal Regeneration. Methods in Molecular Biology, vol 2145. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0599-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0599-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0598-1

  • Online ISBN: 978-1-0716-0599-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics