Skip to main content

Fabrication of a Human Recombinant Collagen-Based Corneal Substitute Using Carbodiimide Chemistry

  • Protocol
  • First Online:
Corneal Regenerative Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1014))

Abstract

Human recombinant collagen can be cross-linked with a variety of chemical cross-linking agents. Cross-linking methods can be tuned to confer collagen-based scaffolds with specific physical properties, improved antigenicity and thermal stability without impeding the ability of the material to integrate into the surrounding tissue and to promote regeneration. Here, we describe a method to cross-link human recombinant collagen using a water soluble carbodiimide. Carbodiimides are referred to as zero-length cross-linking agents as they are not incorporated into the final cross-link and thus pose minimal risk with respect to cytotoxicity. The resulting collagen-based scaffold possesses properties comparable to that of the human cornea and is thus suitable for use as a corneal substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N et al (2008) Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Invest Ophthalmol Vis Sci 49:3887–3894

    Article  PubMed  Google Scholar 

  2. Yang C, Hillas PJ, Baez JA, Nokelainen MJ, Balan J, Tang J et al (2004) The application of recombinant human collagen in tissue engineering. BioDrugs 18:103–119

    Article  PubMed  CAS  Google Scholar 

  3. Stein H, Wilensky MI, Tsafrir Y, Rosenthal M, Amir R, Avraham T et al (2009) Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 10:2640–2645

    Article  PubMed  CAS  Google Scholar 

  4. Kew SJ, Gwynne JH, Enea D, Abu-Rub M, Pandit A, Zeugolis D et al (2011) Regeneration and repair of tendon and ligament tissue using collagen-fibre biomaterials. Acta Biomater 7:3237–3247

    Article  PubMed  CAS  Google Scholar 

  5. Williams DF (1985) Biocompatibility of tissue analogs, vol 1. CRC, Boca Raton, FL

    Google Scholar 

  6. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  7. Nam K, Kimura T, Funamoto S, Kishida A (2010) Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent. Acta Biomater 6:403–408

    Article  PubMed  CAS  Google Scholar 

  8. Stricklin GP, Hibbs MS, Nimmi ME (eds) (1988) Collagen. CRC, Boca Raton, FL

    Google Scholar 

  9. Gendler E, Gendler S, Nimni ME (1984) Toxic reactions evoked by glutaraldehyde-fixed pericardium and cardiac valve tissue bioprotheses. J Biomed Mater Res 18:727–736

    Article  PubMed  CAS  Google Scholar 

  10. Duncan AC, Boughner D, Vesley I (1996) Dynamic glutaraldehyde fixation of a porcine aortic valve xenograft: I. Effect of fixation conditions on the final tissue viscoelastic properties. Biomaterials 17:1849–1856

    Article  PubMed  CAS  Google Scholar 

  11. Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 6:123–130

    Article  PubMed  CAS  Google Scholar 

  12. Gilles MA, Hudson AQ, Borders C (1990) Stability of water soluble carbodiimides in aqueous solution. Anal Biochem 184:244–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada, Canadian Stemcell network for research funding (M.G.). We thank our colleagues, Drs. David Carlsson and Yuwen Liu, for their contributions to the development of early constructs.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Islam, M.M., Griffith, M., Merrett, K. (2013). Fabrication of a Human Recombinant Collagen-Based Corneal Substitute Using Carbodiimide Chemistry. In: Wright, B., Connon, C. (eds) Corneal Regenerative Medicine. Methods in Molecular Biology, vol 1014. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-432-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-432-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-431-9

  • Online ISBN: 978-1-62703-432-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics