Skip to main content

Quantitative Assays of Plasma Apolipoproteins

  • Protocol
  • First Online:
Clinical and Preclinical Models for Maximizing Healthspan

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2138))

Abstract

The apolipoproteins are well known for their roles in both health and disease, as components of plasma lipoprotein particles, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), very-low-density lipoprotein (VLDL), chylomicrons, and metabolic, vascular- and inflammation-related disorders, such as cardiovascular disease, atherosclerosis, metabolic syndrome, and diabetes. Increasingly, their roles in neurovascular and neurodegenerative disorders are also being elucidated. They play major roles in lipid and cholesterol transport between blood and organs and are, therefore, critical to maintenance and homeostasis of the lipidome, with apolipoprotein–lipid interactions, including cholesterol, fatty acids, triglycerides, phospholipids, and isoprostanes. Further, they have important pleiotropic roles related to aging and longevity, which are largely managed through their many structural variants, including multiple isoforms, and a diversity of post-translational modifications. Consequently, tools for the characterization and accurate quantification of apolipoproteins, including their diverse array of variant forms, are required to understand their salutary and disease related roles. In this chapter we outline three distinct quantitative approaches suitable for targeting apolipoproteins: (1) multiplex immunoassays, (2) mass spectrometric immunoassay, and (3) multiple reaction monitoring, mass spectrometric quantification. We also discuss management of pre-analytical and experimental design variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song F, Poljak A, Crawford J, Kochan NA, Wen W, Cameron B et al (2012) Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLoS One 7(6):e34078. https://doi.org/10.1371/journal.pone.0034078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA et al (2014) Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease using iTRAQ quantitative proteomics. Proteome Sci 12(1):5. https://doi.org/10.1186/1477-5956-12-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muffat J, Walker DW (2010) Apolipoprotein D: an overview of its role in aging and age-related diseases. Cell Cycle 9(2):269–273

    Article  CAS  PubMed  Google Scholar 

  4. Trougakos IP, Gonos ES (2002) Clusterin/apolipoprotein J in human aging and cancer. Int J Biochem Cell Biol 34(11):1430–1448

    Article  CAS  PubMed  Google Scholar 

  5. Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH et al (1994) Human apolipoprotein E. role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 269:22358–22365

    CAS  PubMed  Google Scholar 

  6. Borhani DW, Rogers DP, Engler JA, Brouillette CG (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bouma B, de Groot PG, van den Elsen JM, Ravelli RB, Schouten A, Simmelink MJ et al (1999) Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure. EMBO J 18(23):5166–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rozek A, Sparrow JT, Weisgraber KH, Cushley RJ (1999) Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy. Biochemistry 38(44):14475–14484

    Article  CAS  PubMed  Google Scholar 

  9. Ye Q, Rahman MN, Koschinsky ML, Jia Z (2001) High-resolution crystal structure of apolipoprotein(a) kringle IV type 7: insights into ligand binding. Protein Sci 10(6):1124–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43(25):8084–8093

    Article  CAS  PubMed  Google Scholar 

  11. Eichinger A, Nasreen A, Kim HJ, Skerra A (2007) Structural insight into the dual ligand specificity and mode of high density lipoprotein association of apolipoprotein D. J Biol Chem 282(42):31068–31075

    Article  CAS  PubMed  Google Scholar 

  12. Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283(25):17416–17427

    Article  CAS  PubMed  Google Scholar 

  13. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deng X, Morris J, Dressmen J, Tubb MR, Tso P, Jerome WG et al (2012) The structure of dimeric apolipoprotein A-IV and its mechanism of self-association. Structure 20(5):767–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu J, Yu Y, Zhu I, Cheng Y, Sun PD (2014) Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proc Natl Acad Sci U S A 111(14):5189–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S et al (2015) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement 11(5):549–560

    Article  PubMed  Google Scholar 

  17. Wong MW, Braidy N, Poljak A, Pickford R, Thambisetty M, Sachdev PS (2017) Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement 13(7):810–827

    Article  PubMed  Google Scholar 

  18. Choi JH, Jeong E, Youn BS, Kim MS (2018) Distinct Ultradian rhythms in plasma Clusterin concentrations in lean and obese Korean subjects. Endocrinol Metab (Seoul) 33(2):245–251

    Article  CAS  Google Scholar 

  19. Pan X, Munshi MK, Iqbal J, Queiroz J, Sirwi AA, Shah S et al (2013) Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein. J Biol Chem 288(28):20464–20476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eick GN, Kowal P, Barrett T, Thiele EA, Snodgrass JJ (2017) Enzyme-linked immunoassay-based quantitative measurement of apolipoprotein B (ApoB) in dried blood spots, a biomarker of cardiovascular disease risk. Biodemography Soc Biol 63(2):116–130

    Article  PubMed  Google Scholar 

  21. Rebholz SL, Melchior JT, Welge JA, Remaley AT, Davidson W, Woollett LA (2017) Effects of multiple freeze/thaw cycles on measurements of potential novel biomarkers associated with adverse pregnancy outcomes. J Clin Lab Med 29(1). https://doi.org/10.16966/2572-9578.107

  22. Muenchhoff J, Song F, Poljak A, Crawford JD, Mather KA, Kochan NA et al (2017) Plasma apolipoproteins and physical and cognitive health in very old individuals. Neurobiol Aging 55:49–60

    Article  CAS  PubMed  Google Scholar 

  23. Nelson RW, Krone JR, Bieber AL, Williams P (1995) Mass spectrometric immunoassay. Anal Chem 67:1153–1158

    Article  CAS  PubMed  Google Scholar 

  24. Yassine H, Borges CR, Schaab MR, Billheimer D, Stump C, Reaven P et al (2013) Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl 7(7–8):528–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiernan UA, Phillips DA, Trenchevska O, Nedelkov D (2011) Quantitative mass spectrometry evaluation of human retinol binding protein 4 and related variants. PLoS One 6:e17282. https://doi.org/10.1371/journal.pone.0017282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trenchevska O, Kamcheva E, Nedelkov D (2010) Mass spectrometric immunoassay for quantitative determination of protein biomarker isoforms. J Proteome Res 9(11):5969–5973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jennings L, Van Deerlin VM, Gulley ML, College of American Pathologists Molecular Pathology Resource Committee (2009) Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med 133(5):743–755

    PubMed  Google Scholar 

  28. Delatour T, Mottier P, Gremaud E (2007) Limits of suspicion, recognition and confirmation as concepts that account for the confirmation transitions at the detection limit for quantification by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1169(1–2):103–110

    Article  CAS  PubMed  Google Scholar 

  29. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52

    PubMed  PubMed Central  Google Scholar 

  30. Niederkofler EE, Tubbs KA, Gruber K, Nedelkov D, Kiernan UA, Williams P et al (2001) Determination of beta-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal Chem 73(4):3294–3299

    Article  CAS  PubMed  Google Scholar 

  31. Nelson RW, Nedelkov D, Tubbs KA, Kiernan UA (2004) Quantitative mass spectrometric immunoassay of insulin like growth factor 1. J Proteome Res 3(4):851–855

    Article  CAS  PubMed  Google Scholar 

  32. Kiernan UA, Addobbati R, Nedelkov D, Nelson RW (2006) Quantitative multiplexed C-reactive protein mass spectrometric immunoassay. J Proteome Res 5(7):1682–1687

    Article  CAS  PubMed  Google Scholar 

  33. Niederkofler EE, Kiernan UA, O’Rear J, Menon S, Saghir S, Protter AA et al (2008) Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ Heart Fail 1(4):258–264

    Article  CAS  PubMed  Google Scholar 

  34. Oran PE, Jarvis JW, Borges CR, Sherma ND, Nelson RW (2011) Mass spectrometric immunoassay of intact insulin and related variants for population proteomics studies. Proteomics Clin Appl 5(7–8):454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huber L (2007) Validation and qualification in analytical laboratories, 2nd edn. CRC Press, Boca Raton, FL. ISBN-10:084938267X

    Book  Google Scholar 

  36. Ceglarek U, Dittrich J, Becker S, Baumann F, Kortz L, Thiery J (2013) Quantification of seven apolipoproteins in human plasma by proteotypic peptides using fast LC-MS/MS. Proteomics Clin Appl 7(11–12):794–801

    Article  CAS  PubMed  Google Scholar 

  37. von Zychlinski A, Williams M, McCormick S, Kleffmann T (2014) Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins. J Proteome 106:181–190

    Article  CAS  Google Scholar 

  38. van den Broek I, Romijn FP, Nouta J, van der Laarse A, Drijfhout JW, Smit NP et al (2016) Automated multiplex LC-MS/MS assay for quantifying serum apolipoproteins A-I, B, C-I, C-II, C-III, and E with qualitative apolipoprotein E phenotyping. Clin Chem 62(1):188–197

    Article  CAS  PubMed  Google Scholar 

  39. Toth CA, Kuklenyik Z, Jones JI, Parks BA, Gardner MS, Schieltz DM et al (2017) On-column trypsin digestion coupled with LC-MS/MS for quantification of apolipoproteins. J Proteome 150:258–267

    Article  CAS  Google Scholar 

  40. Shi J, Zheng YZ, Sin DD, DeMarco ML (2018) A streamlined method for quantification of apolipoprotein A1 in human plasma by LC-MS/MS. Clin Chem 64(12):1782–1784

    Article  CAS  PubMed  Google Scholar 

  41. Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R (2019) Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res 60(4):900–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirtz C, Vialaret J, Nouadje G, Schraen S, Benlian P, Mary S et al (2016) Development of new quantitative mass spectrometry and semi-automatic isofocusing methods for the determination of apolipoprotein E typing. Clin Chim Acta 454:33–38

    Article  CAS  PubMed  Google Scholar 

  43. Pan Y, Zhou H, Mahsut A, Rohm RJ, Berejnaia O, Price O et al (2014) Static and turnover kinetic measurement of protein biomarkers involved in triglyceride metabolism including apoB48 and apoA5 by LC/MS/MS. J Lipid Res 55(6):1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jayasena T, Poljak A, Braidy N, Zhong L, Rowlands B, Muenchhoff J et al (2016) Application of targeted mass spectrometry for the quantification of Sirtuins in the central nervous system. Sci Rep 6:35391. https://doi.org/10.1038/srep35391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marks V, Cantor T, Mesko D, Pullmann R, Nosalova G (2002) Differential diagnosis by laboratory medicine: a quick reference guide for physicians. Springer, New York, NY. ISBN: 9783540430575

    Book  Google Scholar 

  46. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Lab Investig 96(7):708–718

    Article  CAS  PubMed  Google Scholar 

  47. Sengupta MB, Mukhopadhyay D (2016) Possible role of apolipoprotein A1 in healing and cell death after neuronal injury. Front Biosci (Elite Ed) 8:460–477

    Google Scholar 

  48. Yang M, Liu Y, Dai J, Li L, Ding X, Xu Z (2018) Apolipoprotein A-II induces acute-phase response associated AA amyloidosis in mice through conformational changes of plasma lipoprotein structure. Sci Rep 8(1):5620. https://doi.org/10.1038/s41598-018-23755-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang CY, Gu ZW, Blanco-Vaca F, Gaskell SJ, Yang M, Massey JB et al (1994) Structure of human apolipoprotein D: locations of the intermolecular and intramolecular disulfide links. Biochemistry 33(41):12451–12455

    Article  CAS  PubMed  Google Scholar 

  50. Qu J, Ko CW, Tso P, Bhargava A (2019) Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8(4):Pii: E319. https://doi.org/10.3390/cells8040319

    Article  CAS  Google Scholar 

  51. Manjunatha S, Distelmaier K, Dasari S, Carter RE, Kudva YC, Nair KS (2016) Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism 65(9):1421–1431

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G (2007) Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 46(12):3896–3904

    Article  CAS  PubMed  Google Scholar 

  53. Xu C, Bai R, Zhang D, Li Z, Zhu H, Lai M, Zhu Y (2013) Effects of APOA5 -1131T>C (rs662799) on fasting plasma lipids and risk of metabolic syndrome: evidence from a case-control study in China and a meta-analysis. PLoS One 8(2):e56216. https://doi.org/10.1371/journal.pone.0056216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smit M, van der Kooij-Meijs E, Frants RR, Havekes L, Klasen EC (1988) Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic Hpa I site associated with type III hyperlipoproteinemia. Hum Genet 78(1):90–93

    Article  CAS  PubMed  Google Scholar 

  55. Lee CJ, Choi S, Cheon DH, Kim KY, Cheon EJ, Ann SJ et al (2017) Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial. Lipids Health Dis 16(1):49. https://doi.org/10.1186/s12944-017-0433-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA et al (2010) Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 5(3):e9763. https://doi.org/10.1371/journal.pone.0009763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van den Broek I, Sobhani K, Van Eyk JE (2017) Advances in quantifying apolipoproteins using LC-MS/MS technology: implications for the clinic. Expert Rev Proteomics 14(10):869–880

    Article  CAS  PubMed  Google Scholar 

  58. Chun EM, Park YJ, Kang HS, Cho HM, Jun DY, Kim YH (2001) Expression of the apolipoprotein C-II gene during myelomonocytic differentiation of human leukemic cells. J Leukoc Biol 69(4):645–650

    CAS  PubMed  Google Scholar 

  59. Kinnunen PK, Jackson RL, Smith LC, Gotto AM Jr, Sparrow JT (1977) Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci U S A 74(11):4848–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumpusalo E, Karinpää A, Jauhiainen M, Laitinen M, Lappeteläinen R, Mäenpää PH (1990) Multivitamin supplementation of adult omnivores and lactovegetarians: circulating levels of vitamin a, D and E, lipids, apolipoproteins and selenium. Int J Vitam Nutr Res 60(1):58–66

    CAS  PubMed  Google Scholar 

  61. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273

    Article  CAS  PubMed  Google Scholar 

  62. Cox DW, Breckenridge WC, Little JA (1978) Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med 299(26):1421–1424

    Article  CAS  PubMed  Google Scholar 

  63. Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO et al (2017) Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rezeli M, Vegvari A, Fehniger TE, Laurell T, Marko-Varga G (2011) Moving towards high density clinical signature studies with a human proteome catalogue developing multiplexing mass spectrometry assay panels. J Clin Bioinform 1(1):7. https://doi.org/10.1186/2043-9113-1-7

    Article  CAS  Google Scholar 

  65. Abrams AJ, Farooq A, Wang G (2011) S-nitrosylation of ApoE in Alzheimer’s disease. Biochemistry 50(17):3405–3407

    Article  CAS  PubMed  Google Scholar 

  66. Ducret A, Bruun CF, Bures EJ, Marhaug G, Husby G, Aebersold R (1996) Characterization of human serum amyloid a protein isoforms separated by two-dimensional electrophoresis by liquid chromatography/electrospray ionization tandem mass spectrometry. Electrophoresis 17(5):866–876

    Article  CAS  PubMed  Google Scholar 

  67. Halim A, Nilsson J, RĂĽetschi U, Hesse C, Larson G (2012) Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol Cell Proteomics 11(4):M111.013649. https://doi.org/10.1074/mcp.M111.013649

    Article  CAS  PubMed  Google Scholar 

  68. Kumar A, Gangadharan B, Cobbold J, Thursz M, Zitzmann N (2017) Absolute quantitation of disease protein biomarkers in a single LC-MS acquisition using apolipoprotein F as an example. Sci Rep 7(1):12072. https://doi.org/10.1038/s41598-017-12229-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morton RE, Greene DJ (2011) Conversion of lipid transfer inhibitor protein (apolipoprotein F) to its active form depends on LDL composition. J Lipid Res 52(12):2262–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kujiraoka T, Nakamoto T, Sugimura H, Iwasaki T, Ishihara M, Hoshi T et al (2013) Clinical significance of plasma apolipoprotein F in Japanese healthy and hypertriglyceridemic subjects. J Atheroscler Thromb 20(4):380–390

    Article  CAS  PubMed  Google Scholar 

  71. Chen R, Jiang X, Sun D, Han G, Wang F, Ye M et al (2009) Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J Proteome Res 8(2):651–661

    Article  CAS  PubMed  Google Scholar 

  72. Huang LZ, Gao JL, Pu C, Zhang PH, Wang LZ, Feng G et al (2015) Apolipoprotein M: research progress, regulation and metabolic functions (review). Mol Med Rep 12(2):1617–1624

    Article  CAS  PubMed  Google Scholar 

  73. Lassman ME, McLaughlin TM, Zhou H, Pan Y, Marcovina SM, Laterza O et al (2014) Simultaneous quantitation and size characterization of apolipoprotein(a) by ultra-performance liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 28(10):1101–1106

    Article  CAS  PubMed  Google Scholar 

  74. Vasquez N, Joshi PH (2019) Lp(a): addressing a target for cardiovascular disease prevention. Curr Cardiol Rep 21(9):102. https://doi.org/10.1007/s11886-019-1182-0

    Article  PubMed  Google Scholar 

  75. Lamant M, Smih F, Harmancey R, Philip-Couderc P, Pathak A, Roncalli J et al (2006) ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart. J Biol Chem 281(47):36289–36302

    Article  CAS  PubMed  Google Scholar 

  76. Yu BL, Wu CL, Zhao SP (2012) Plasma apolipoprotein O level increased in the patients with acute coronary syndrome. J Lipid Res 53(9):1952–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turkieh A, Caubere C, Barutaut M, Desmoulin F, Harmancey R, Galinier M et al (2014) Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. J Clin Invest 124(5):2277–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu T, Qian WJ, Gritsenko MA, Camp DG 2nd, Monroe ME, Moore RJ et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4(6):2070–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J et al (2015) A single kinase generates the majority of the secreted phosphoproteome. Cell 161(7):1619–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW et al (2010) The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol 21(9):1422–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hu CA, Klopfer EI, Ray PE (2012) Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett 586(7):947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patel N, Nadkarni GN (2019) Apolipoprotein L1, cardiovascular disease and hypertension: more questions than answers. Cardiol Clin 37(3):327–334

    Article  PubMed  Google Scholar 

  83. Kay RG, Gregory B, Grace PB, Pleasance S (2007) The application of ultra-performance liquid chromatography/tandem mass spectrometry to the detection and quantitation of apolipoproteins in human serum. Rapid Commun Mass Spectrom 21(21):2585–2593

    Article  CAS  PubMed  Google Scholar 

  84. Kumar A, Gangadharan B, Zitzmann N (2016) Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. J Chromatogr B Analyt Technol Biomed Life Sci 1033-1034:278–286

    Article  CAS  PubMed  Google Scholar 

  85. Zhou H, Hoek M, Yi P, Rohm RJ, Mahsut A, Brown P et al (2013) Rapid detection and quantification of apolipoprotein L1 genetic variants and total levels in plasma by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 27(23):2639–2647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Guest for his assistance in the formatting of this chapter. This work was performed with the support of the NH&MRC program grant to Prof Perminder Sachdev, and we thank the Rebecca Cooper Medical Research Foundation and the Sachdev Foundation for their ongoing research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Poljak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poljak, A., Duncan, M.W., Jayasena, T., Sachdev, P.S. (2020). Quantitative Assays of Plasma Apolipoproteins. In: Guest, P. (eds) Clinical and Preclinical Models for Maximizing Healthspan. Methods in Molecular Biology, vol 2138. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0471-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0471-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0470-0

  • Online ISBN: 978-1-0716-0471-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics