Skip to main content

Porcine Hepatocytes: Isolation and Liver Tissue Engineering for Xenotransplantation

  • Protocol
  • First Online:
Xenotransplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2110))

Abstract

Various liver diseases result in liver failure, and liver transplantation as a definite treatment is limited by the shortage of organs available for transplantation. The use of isolated primary hepatocytes in cell-based therapies including hepatocyte transplantation, tissue engineering liver transplantation, and bioartificial liver support systems has gained increasing interest during the past years. Human hepatocytes are the preferred source of cells. Aside from the organ shortage, the isolation of human liver cells is usually limited by obtaining a sufficient quantity of high-quality, metabolically active cells. Furthermore, livers from which hepatocytes are typically harvested are not suitable for transplantation, with the variability in quantity and quality. Porcine hepatocytes, on the other hand, have the ability to perform complex biological functions and show modifiable behavior. Primary porcine hepatocytes are currently widely used in the investigation of drug metabolism, hepatotoxicity, protein biosynthesis, and gene expression. Primary hepatocytes do not proliferate in vitro and are sensitive to freeze-thaw damage in cryopreservation and thus need to be freshly isolated for each experiment. Consequently, the methods of porcine hepatocyte isolation are being actively sought after. Our laboratories have been involved in various applications of liver cells, and we have long-lasting experiences in liver cell isolation and their application in R&D. We here summarize the present protocol of our laboratories for primary hepatocyte isolation from pig and their liver tissue engineering for xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43(43):506–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang QD, Li HP, Liu FJ et al (2013) Isolation and identification of bovine primary hepatocytes. Genet Mol Res 12(4):5186–5194. https://doi.org/10.4238/2013.October.30.3

    Article  CAS  PubMed  Google Scholar 

  3. Shulman M, Nahmias Y (2013) Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol 945:287–302. https://doi.org/10.1007/978-1-62703-125-7_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Naik S, Trenkler D, Santangini H, Pan J, Jauregui HO (1996) Isolation and culture of porcine hepatocytes for artificial liver support. Cell Transplant 5(1):107–115

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Wang Y, Wu Q, Li L, Shi Y, Bu H, Bao J (2016) Comparison of methods for isolating primary hepatocytes from mini pigs. Xenotransplantation 23(5):414–420. https://doi.org/10.1111/xen.12259

    Article  PubMed  Google Scholar 

  6. Nelson LJ, Newsome PN, Howie AF et al (2000) An improved ex vivo method of primary porcine hepatocyte isolation for use in bioartificial liver systems. Eur J Gastroenterol Hepatol 12(8):923

    Article  CAS  PubMed  Google Scholar 

  7. Maruyama M, Totsugawa T, Kunieda T et al (2003) Hepatocyte isolation and transplantation in the pig. Cell Transplant 12(6):593–598

    Article  PubMed  Google Scholar 

  8. Mitaka T (1998) The current status of primary hepatocyte culture. Int J Exp Pathol 79(6):393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rush GF, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR (1985) Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol 78(3):473–483

    Article  CAS  PubMed  Google Scholar 

  10. Boess F, Kamber M, Romer S et al (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73(2):386–402

    Article  CAS  PubMed  Google Scholar 

  11. Hickey RD, Lillegard JB, Fisher JE et al (2011) Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology 54(4):1351–1359. https://doi.org/10.1002/hep.24490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hickey RD, Mao SA, Glorioso J et al (2014) Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Res 13(1):144–153. https://doi.org/10.1016/j.scr.2014.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lloyd TD, Orr S, Patel R et al (2004) Effect of patient, operative and isolation factors on subsequent yield and viability of human hepatocytes for research use. Cell Tissue Banking 5(2):81–87

    Article  CAS  PubMed  Google Scholar 

  14. Bao J, Fisher JE, Lillegard JB et al (2013) Serum-free medium and mesenchymal stromal cells enhance functionality and stabilize integrity of rat hepatocyte spheroids. Cell Transplant 22(2):299–308. https://doi.org/10.3727/096368912X656054

    Article  PubMed  Google Scholar 

  15. Alexandre E, Cahn M, Abadieviollon C et al (2002) Influence of pre-, intra- and post-operative parameters of donor liver on the outcome of isolated human hepatocytes. Cell Tissue Banking 3(4):223–233

    Article  CAS  PubMed  Google Scholar 

  16. Puviani AC, Ottolenghi C, Tassinari B, Pazzi P, Morsiani E (1998) An update on high-yield hepatocyte isolation methods and on the potential clinical use of isolated liver cells [Review]. Comp Biochem Physiol A Mol Integr Physiol 121(2):99–109

    Article  CAS  PubMed  Google Scholar 

  17. Bartlett DC, Hodson J, Bhogal RH, Youster J, Newsome PN (2014) Combined use of N -acetylcysteine and Liberase improves the viability and metabolic function of human hepatocytes isolated from human liver. Cytotherapy 16(6):800–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Solanas E, Sostres C, Serrablo A et al (2015) Effect of dimethyl sulfoxide and melatonin on the isolation of human primary hepatocytes. Cells Tissues Organs 200(5):2–13

    Google Scholar 

  19. Sellaro TL, Ranade A, Faulk DM et al (2010) Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels. Tissue Eng A 16(3):1075

    Article  CAS  Google Scholar 

  20. Sérandour AL, Loyer P, Garnier D et al (2005) TNFalpha-mediated extracellular matrix remodeling is required for multiple division cycles in rat hepatocytes. Hepatology 41(3):478–486

    Article  PubMed  Google Scholar 

  21. Hammond JS, Gilbert TW, Howard D et al (2011) Scaffolds containing growth factors and extracellular matrix induce hepatocyte proliferation and cell migration in normal and regenerating rat liver. J Hepatol 54(2):279–287

    Article  CAS  PubMed  Google Scholar 

  22. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J (2009) Angiogenesis in liver disease. J Hepatol 50(3):604–620

    Article  PubMed  Google Scholar 

  23. Lin P, Chan WC, Badylak SF, Bhatia SN (2004) Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng 10(8):1046–1053

    Article  CAS  PubMed  Google Scholar 

  24. Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yagi H, Fukumitsu K, Fukuda K et al (2013) Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach. Cell Transplant 22(2):231–242

    Article  PubMed  Google Scholar 

  26. Maghsoudlou P, Georgiades F, Smith H et al (2016) Optimization of liver decellularization maintains extracellular matrix micro-architecture and composition predisposing to effective cell seeding. PLoS One 11(5):e0155324

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Bao J, Wu Q et al (2015) Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 22(1):48–61. https://doi.org/10.1111/xen.12141

    Article  CAS  PubMed  Google Scholar 

  28. Noishiki Y, Miyata T (2010) A simple method to heparinize biological materials. J Biomed Mater Res A 20(3):337–346

    Article  Google Scholar 

  29. Murugesan S, Xie J, Linhardt RJ (2008) Immobilization of heparin: approaches and applications. Curr Top Med Chem 8(2):80–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bao J, Shi Y, Sun H et al (2011) Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant 20(5):753–766. https://doi.org/10.3727/096368910X536572

    Article  PubMed  Google Scholar 

  31. Bruinsma BG, Kim Y, Berendsen TA, Ozer S, Yarmush ML, Uygun BE (2015) Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts. J Clin Transl Res 1(1):48–56

    PubMed  PubMed Central  Google Scholar 

  32. Bao J, Wu Q, Sun J et al (2015) Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep 5:10756. https://doi.org/10.1038/srep10756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Bao J, Wu X et al (2016) Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep 6:24779. https://doi.org/10.1038/srep24779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Badylak SF, Valentin JE, Ravindra AK, Mccabe GP, Stewartakers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng A 14(11):1835

    Article  CAS  Google Scholar 

  35. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502

    Article  CAS  Google Scholar 

  36. Martino MM, Briquez PS, Güç E et al (2014) Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 343(6173):885–888

    Article  CAS  PubMed  Google Scholar 

  37. Mazza G, Rombouts K, Hall AR et al (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sotogutierrez A, Zhang L, Medberry C et al (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 17(6):677–686

    Article  CAS  Google Scholar 

  39. Lin YQ, Wang LR, Wang JT et al (2015) New advances in liver decellularization and recellularization: innovative and critical technologies. Expert Rev Gastroenterol Hepatol 9(9):1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Bao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, Y., Wu, Q., Wang, Y., Bu, H., Bao, J. (2020). Porcine Hepatocytes: Isolation and Liver Tissue Engineering for Xenotransplantation. In: Costa, C. (eds) Xenotransplantation. Methods in Molecular Biology, vol 2110. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0255-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0255-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0254-6

  • Online ISBN: 978-1-0716-0255-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics