Skip to main content

Advertisement

Log in

Liver Cryopreservation for Regenerative Medicine Applications

  • ORIGINAL RESEARCH
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The liver has unique regenerative properties that make it an ideal target for regenerative medicine applications. Hepatic systems are functional subunits of the liver and include hepatocytes, liver organoids, precision cut liver slices (PCLS), liver segments/lobes, and whole organs. Each has particular role in research, diagnostic, and therapeutic applications. In particular, hepatic systems have critical roles in pharmacotoxicology testing during drug discovery, liver pathophysiology research, and treatment of acute and chronic liver failure through bioartificial livers or liver transplant. However, each of these applications is limited by scarcity of donors and large variability between these donors. One strategy to mitigate these limitations would be to develop a method for cryopreserving hepatic systems. Cryopreservation could revolutionize how these tissues are used and ultimately save many lives. In this review, we will discuss the limitations for applying conventional methods of cryopreservation to hepatic systems and how new strategies for cryopreserving livers, PCLS, organoids, and hepatocytes by vitrification may overcome these limitations.

Lay Summary

There is an ever-growing shortage of livers for transplant as well as for research and diagnostic applications. Strategies for liver cryopreservation, or storage at ultralow temperatures, could allow preservation of these organs and tissues indefinitely. Such methods for “banking” livers and liver tissues would revolutionize how they are used in research and the treatment of patients. Here we describe limitations of existing technology and propose a new strategy for indefinite storage of liver and liver tissues in a low-temperature vitrified, or glass-like, state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Higgins GM. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol. 1931;12:186–202.

  2. Gilgenkrantz H, Collin de l’Hortet A. Understanding liver regeneration: from mechanisms to regenerative medicine. Am J Pathol 2018;188(6):1316–1327. https://doi.org/10.1016/j.ajpath.2018.03.008.

  3. Tapper EB, Parikh ND. Mortality due to cirrhosis and liver cancer in the United States, 1999–2016: observational study. BMJ (Clinical research ed). 2018;362:k2817. https://doi.org/10.1136/bmj.k2817.

    Article  Google Scholar 

  4. Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83(1–2):232–40. https://doi.org/10.1038/pr.2017.284.

    Article  CAS  Google Scholar 

  5. Ibars EP, Cortes M, Tolosa L, Gomez-Lechon MJ, Lopez S, Castell JV, et al. Hepatocyte transplantation program: lessons learned and future strategies. World J Gastroenterol. 2016;22(2):874–86. https://doi.org/10.3748/wjg.v22.i2.874.

    Article  CAS  Google Scholar 

  6. Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation. 2012;93(4):342–7. https://doi.org/10.1097/TP.0b013e31823b72d6.

    Article  CAS  Google Scholar 

  7. Kjaergard LL, Liu J, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. Jama. 2003;289(2):217–22.

    Article  Google Scholar 

  8. Demetriou AA, Brown RS Jr, Busuttil RW, Fair J, McGuire BM, Rosenthal P, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239(5):660–7 discussion 7-70.

    Article  Google Scholar 

  9. Saliba F, Camus C, Durand F, Mathurin P, Letierce A, Delafosse B, et al. Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: a randomized, controlled trial. Ann Intern Med. 2013;159(8):522–31. https://doi.org/10.7326/0003-4819-159-8-201310150-00005.

    Article  Google Scholar 

  10. Lecluyse EL, Alexandre E. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods in molecular biology (Clifton, NJ). 2010;640:57–82. https://doi.org/10.1007/978-1-60761-688-7_3.

    Article  CAS  Google Scholar 

  11. Phillips KA, Veenstra DL, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. Jama. 2001;286(18):2270–9.

    Article  CAS  Google Scholar 

  12. Sertkaya AB, A.; Berlind, A.; Eyraud, J. Examination of clinical trial costs and barriers for drug development. US Department of Health and Human Services. 2014.

  13. Broutier L, Andersson-Rolf A, Hindley CJ, Boj SF, Clevers H, Koo BK, et al. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc. 2016;11(9):1724–43. https://doi.org/10.1038/nprot.2016.097.

    Article  CAS  Google Scholar 

  14. Hindley CJ, Cordero-Espinoza L, Huch M. Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol. 2016;420(2):251–61. https://doi.org/10.1016/j.ydbio.2016.06.039.

    Article  CAS  Google Scholar 

  15. Kaushik G, Ponnusamy MP, Batra SK. Concise review: current status of three-dimensional organoids as preclinical models. Stem cells (Dayton, Ohio). 2018;36(9):1329–40. https://doi.org/10.1002/stem.2852.

    Article  Google Scholar 

  16. Palma E, Doornebal EJ, Chokshi S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol Int. 2018;13:51–7. https://doi.org/10.1007/s12072-018-9913-7.

    Article  Google Scholar 

  17. Olinga P, Schuppan D. Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol. 2013;58(6):1252–3. https://doi.org/10.1016/j.jhep.2013.01.009.

    Article  Google Scholar 

  18. Burnell JM, Thomas ED, Ansell JS, Cross HE, Dillard DH, Epstein RB, et al. Observations on cross circulation in man. Am J Med. 1965;38:832–41.

    Article  CAS  Google Scholar 

  19. Horslen SP, Hammel JM, Fristoe LW, Kangas JA, Collier DS, Sudan DL, et al. Extracorporeal liver perfusion using human and pig livers for acute liver failure. Transplantation. 2000;70(10):1472–8.

    Article  CAS  Google Scholar 

  20. Runge D, Runge DM, Jager D, Lubecki KA, Beer Stolz D, Karathanasis S, et al. Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions. Biochem Biophys Res Commun. 2000;269(1):46–53. https://doi.org/10.1006/bbrc.2000.2215.

    Article  CAS  Google Scholar 

  21. Hino H, Tateno C, Sato H, Yamasaki C, Katayama S, Kohashi T, et al. A long-term culture of human hepatocytes which show a high growth potential and express their differentiated phenotypes. Biochem Biophys Res Commun. 1999;256(1):184–91. https://doi.org/10.1006/bbrc.1999.0288.

    Article  CAS  Google Scholar 

  22. Fahy GM, MacFarlane DR, Angell CA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21(4):407–26.

    Article  CAS  Google Scholar 

  23. Finger EB, Bischof JC. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr Opin Organ Trans. 2018;23(3):353–60. https://doi.org/10.1097/mot.0000000000000534.

    Article  CAS  Google Scholar 

  24. Lewis JK, Bischof JC, Braslavsky I, Brockbank KG, Fahy GM, Fuller BJ, et al. The grand challenges of organ banking: proceedings from the first global summit on complex tissue cryopreservation. Cryobiology. 2016;72(2):169–82. https://doi.org/10.1016/j.cryobiol.2015.12.001.

    Article  Google Scholar 

  25. Niepel M, Spencer SL, Sorger PK. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr Opin Chem Biol. 2009;13(5–6):556–61. https://doi.org/10.1016/j.cbpa.2009.09.015.

    Article  CAS  Google Scholar 

  26. Dornbos P, LaPres JJ. Incorporating population-level genetic variability within laboratory models in toxicology: from the individual to the population. Toxicology. 2018;395:1–8. https://doi.org/10.1016/j.tox.2017.12.007.

    Article  CAS  Google Scholar 

  27. Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys Cell Phys. 1984;247(3):C125–C42.

    Article  CAS  Google Scholar 

  28. Han B, Bischof JC. Engineering challenges in tissue preservation. Cell Preserv Technol. 2004;2(2):91–112.

    Article  Google Scholar 

  29. Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17(3):243–56.

    Article  CAS  Google Scholar 

  30. Song YC, Khirabadi BS, Lightfoot F, Brockbank KG, Taylor MJ. Vitreous cryopreservation maintains the function of vascular grafts. Nat Biotechnol. 2000;18(3):296–9. https://doi.org/10.1038/73737.

    Article  CAS  Google Scholar 

  31. Taylor MJ, Song YC, Brockbank KG. Vitrifaction in tissue preservation: new developments. . In: Press C, editor. Life in the Frozen State. 2004. p. 604–36.

  32. Fahy GM, Wowk B. Principles of cryopreservation by vitrification. Methods Mol Biol. 2015;1257:21–82. https://doi.org/10.1007/978-1-4939-2193-5_2.

  33. Pegg D. Principles of cryopreservation. Methods in molecular biology (Clifton, NJ). 2007;368:39–57. https://doi.org/10.1007/978-1-59745-362-2_3.

  34. Bischof JC. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu Rev Biomed Eng. 2000;2:257–88. https://doi.org/10.1146/annurev.bioeng.2.1.257.

    Article  CAS  Google Scholar 

  35. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60(2 Suppl 1):40–9.

    Article  Google Scholar 

  36. Somero GN, DeVries AL. Temperature tolerance of some Antarctic fishes. Science (New York, NY). 1967;156(3772):257–8.

  37. DeVries AL. Glycoproteins as biological antifreeze agents in antarctic fishes. Science (New York, NY). 1971;172(3988):1152–5.

  38. Knight CA, DeVries AL, Oolman LD. Fish antifreeze protein and the freezing and recrystallization of ice. Nature. 1984;308(5956):295–6.

    Article  CAS  Google Scholar 

  39. Rubinsky B, Arav A, Devries AL. The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes. Cryobiology. 1992;29(1):69–79.

    Article  CAS  Google Scholar 

  40. Storey KB, Storey JM. Molecular biology of freezing tolerance. Comprehensive Physiology. 2013;3(3):1283–308. https://doi.org/10.1002/cphy.c130007.

    Article  Google Scholar 

  41. Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev. 1985;65(4):799–832. https://doi.org/10.1152/physrev.1985.65.4.799.

    Article  CAS  Google Scholar 

  42. Storey KB, Baust JG, Wolanczyk JP. Biochemical modification of plasma ice nucleating activity in a freeze-tolerant frog. Cryobiology. 1992;29(3):374–84.

    Article  CAS  Google Scholar 

  43. Wolanczyk JP, Storey KB, Baust JG. Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica. Cryobiology. 1990;27(3):328–35.

    Article  CAS  Google Scholar 

  44. Halberg KA, Persson D, Ramlov H, Westh P, Kristensen RM, Mobjerg N. Cyclomorphosis in Tardigrada: adaptation to environmental constraints. J Exp Biol. 2009;212(17):2803–11. https://doi.org/10.1242/jeb.029413.

    Article  Google Scholar 

  45. Lovelock JE. The haemolysis of human red blood-cells by freezing and thawing. Biochim Biophys Acta. 1953;10(3):414–26.

    Article  CAS  Google Scholar 

  46. Lovelock JE. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953;11(1):28–36.

    Article  CAS  Google Scholar 

  47. Farrant J, Woolgar AE. Human red cells under hypertonic conditions; a model system for investigating freezing damage. I Sodium chloride Cryobiology. 1972;9(1):9–15.

    CAS  Google Scholar 

  48. Farrant J, Woolgar AE. Human red cells under hypertonic conditions; a model system for investigating freezing damage. 2. Sucrose. Cryobiology. 1972;9(1):16–21.

    Article  CAS  Google Scholar 

  49. Polge C, Smith AU, Parkes AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature. 1949;164(4172):666.

    Article  CAS  Google Scholar 

  50. Lovelock JE, Bishop MW. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature. 1959;183(4672):1394–5.

    Article  CAS  Google Scholar 

  51. Terry C, Dhawan A, Mitry RR, Lehec SC, Hughes RD. Optimization of the cryopreservation and thawing protocol for human hepatocytes for use in cell transplantation. Liver Transpl. 2010;16(2):229–37. https://doi.org/10.1002/lt.21983.

  52. Kilbride P, Lamb S, Gibbons S, Bundy J, Erro E, Selden C, et al. Cryopreservation and re-culture of a 2.3 litre biomass for use in a bioartificial liver device. PLoS One. 2017;12(8):e0183385. https://doi.org/10.1371/journal.pone.0183385.

    Article  CAS  Google Scholar 

  53. Glorioso JM, Mao SA, Rodysill B, Mounajjed T, Kremers WK, Elgilani F, et al. Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J Hepatol. 2015;63(2):388–98. https://doi.org/10.1016/j.jhep.2015.03.021.

    Article  Google Scholar 

  54. Kashte S, Maras JS, Kadam S. Bioinspired engineering for liver tissue regeneration and development of bioartificial liver: a review. Crit Rev Biomed Eng. 2018;46(5):413–27. https://doi.org/10.1615/CritRevBiomedEng.2018028276.

    Article  Google Scholar 

  55. Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, et al. Concise review: liver regenerative medicine: from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells (Dayton, Ohio). 2017;35(1):42–50. https://doi.org/10.1002/stem.2500.

    Article  Google Scholar 

  56. Rubinsky B, Lee CY, Bastacky J, Onik G. The process of freezing and the mechanism of damage during hepatic cryosurgery. Cryobiology. 1990;27(1):85–97.

    Article  CAS  Google Scholar 

  57. Gilra N. Homogeneous nucleation temperature of supercooled water. Phys Lett A. 1968;28(1):51–2.

    Article  CAS  Google Scholar 

  58. Bald WB. On crystal size and cooling rate. J Microsc. 1986;143(Pt 1):89–102. https://doi.org/10.1111/j.1365-2818.1986.tb02767.x.

    Article  CAS  Google Scholar 

  59. Fahy GM, Wowk B, Wu J, Phan J, Rasch C, Chang A, et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology. 2004;48(2):157–78. https://doi.org/10.1016/j.cryobiol.2004.02.002.

    Article  CAS  Google Scholar 

  60. Fahy GM, Wowk B, Pagotan R, Chang A, Phan J, Thomson B, et al. Physical and biological aspects of renal vitrification. Organogenesis. 2009;5(3):167–75.

    Article  Google Scholar 

  61. Mehl PM. Nucleation and crystal growth in a vitrification solution tested for organ cryopreservation by vitrification. Cryobiology. 1993;30(5):509–18. https://doi.org/10.1006/cryo.1993.1051.

    Article  CAS  Google Scholar 

  62. Plitz J, Rabin Y, Walsh JR. The effect of thermal expansion of ingredients on the cocktails VS55 and DP6. Cell Preser Technol. 2004;2(3):215–26. https://doi.org/10.1089/cpt.2004.2.215.

    Article  CAS  Google Scholar 

  63. Farrant J. Water transport and cell survival in cryobiological procedures. Philos Trans R Soc Lond B Biol Sci. 1977;278(959):191–205.

  64. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313(6003):573–5.

    Article  CAS  Google Scholar 

  65. de Graaf IA, Draaisma AL, Schoeman O, Fahy GM, Groothuis GM, Koster HJ. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification. Cryobiology. 2007;54(1):1–12. https://doi.org/10.1016/j.cryobiol.2006.09.002.

    Article  CAS  Google Scholar 

  66. Fahy GM, Guan N, de Graaf IA, Tan Y, Griffin L, Groothuis GM. Cryopreservation of precision-cut tissue slices. Xenobiotica. 2013;43(1):113–32. https://doi.org/10.3109/00498254.2012.728300.

  67. Ruggera PS, Fahy GM. Rapid and uniform electromagnetic heating of aqueous cryoprotectant solutions from cryogenic temperatures. Cryobiology. 1990;27(5):465–78. https://doi.org/10.1016/0011-2240(90)90035-3.

    Article  CAS  Google Scholar 

  68. Robinson M, Wusteman M, Wang L, Pegg D. Electromagnetic re-warming of cryopreserved tissues: effect of choice of cryoprotectant and sample shade of uniformity of heating. Phys Med Biol. 2002;47(13):2311–25.

    Article  Google Scholar 

  69. Wusteman M, Robinson M, Pegg D. Vitrification of large tissues with dielectric warming: biological problems and some approaches to their solution. Cryobiology. 2004;48(2):179–89. https://doi.org/10.1016/j.cryobiol.2004.01.002.

    Article  CAS  Google Scholar 

  70. Robinson M, Pegg D. Rapid electromagnetic warming of cells and tissues. IEEE Trans Biomed Eng. 1999;46(12):1413–25. https://doi.org/10.1109/10.804569.

    Article  CAS  Google Scholar 

  71. Rachman MJ. Electromagnetic warming of cryopreserved organs: University of Cambridge; 1990.

  72. Luo D, Yu C, He L, Lu C, Gao D. Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials. Cryobiology. 2006;53(2):288–93.

    Article  CAS  Google Scholar 

  73. Evans S. Electromagnetic rewarming: the effect of CPA concentration and radio source frequency on uniformity and efficiency of heating. Cryobiology. 2000;40(2):126–38.

    Article  CAS  Google Scholar 

  74. Burdette EC, Karow AM Jr. Kidney model for study of electromagnetic thawing. Cryobiology. 1978;15(2):142–51.

    Article  CAS  Google Scholar 

  75. Burdette EC, Wiggins S, Brown R, Karow AM Jr. Microwave thawing of frozen kidneys: a theoretically based experimentally-effective design. Cryobiology. 1980;17(4):393–402.

    Article  CAS  Google Scholar 

  76. Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q, Liu F, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med. 2017;9(379). https://doi.org/10.1126/scitranslmed.aah4586.

  77. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 2010;30(1):15–35. https://doi.org/10.1038/jcbfm.2009.192.

  78. Attaluri A, Seshadri M, Mirpour S, Wabler M, Marinho T, Furqan M, et al. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: a feasibility study. Int J Hyperth. 2016;32(5):543–57.

    Article  CAS  Google Scholar 

  79. Manuchehrabadi N, Shi M, Roy P, Qiu J, Xu F, Lu TJ, et al. Metal foam based rewarming of vitrified systems. Cryobiology. 2018;81:231.

    Article  Google Scholar 

  80. Wang YX. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. https://doi.org/10.3978/j.issn.2223-4292.2011.08.03.

  81. Stavis SM, Fagan JA, Stopa M, Liddle JA. Nanoparticle manufacturing–heterogeneity through processes to products. ACS Applied Nano Mater. 2018;1(9):4358–85.

    Article  CAS  Google Scholar 

  82. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia. 2008;24(6):467–74. https://doi.org/10.1080/02656730802104757.

  83. Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK, DeWeese TL, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans Magn. 2012;48(1):47–52. https://doi.org/10.1109/tmag.2011.2162527.

    Article  Google Scholar 

  84. Ivkov R, DeNardo SJ, Daum W, Foreman AR, Goldstein RC, Nemkov VS, et al. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer. Clin Cancer Res. 2005;11(19 Pt 2):7093s–103s. https://doi.org/10.1158/1078-0432.Ccr-1004-0016.

  85. Atkinson WJ, Brezovich IA, Chakraborty DP. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng. 1984;31(1):70–5. https://doi.org/10.1109/tbme.1984.325372.

    Article  CAS  Google Scholar 

  86. de Vries RJ, Banik PD, Nagpal S, Weng L, Ozer S, van Gulik TM, et al. Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir. 2018. https://doi.org/10.1021/acs.langmuir.8b02831.

  87. Jin B, Kleinhans FW, Mazur P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology. 2014;68(3):419–30. https://doi.org/10.1016/j.cryobiol.2014.03.005.

    Article  CAS  Google Scholar 

  88. Khosla K, Zhan L, Bhati A, Carley-Clopton A, Hagedorn M, Bischof J. Characterization of laser gold Nanowarming: a platform for millimeter-scale cryopreservation. Langmuir. 2018. https://doi.org/10.1021/acs.langmuir.8b03011.

  89. Daly J, Zuchowicz N, Nunez Lendo CI, Khosla K, Lager C, Henley EM, et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep. 2018;8(1):15714. https://doi.org/10.1038/s41598-018-34035-0.

    Article  CAS  Google Scholar 

  90. Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano. 2017;11(8):7869–78. https://doi.org/10.1021/acsnano.7b02216.

    Article  CAS  Google Scholar 

Download references

Funding

EBF and JCB are supported by the National Institutes of Health, National Heart Lung and Blood Institute (R01HL135046) and National Institute of Diabetes and Digestive and Kidney Diseases (R01DK117425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik B. Finger.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Bischof, J.C. & Finger, E.B. Liver Cryopreservation for Regenerative Medicine Applications. Regen. Eng. Transl. Med. 7, 57–65 (2021). https://doi.org/10.1007/s40883-019-00131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00131-4

Keywords

Navigation