Skip to main content

Peptide Nucleic Acids for MicroRNA Targeting

  • Protocol
  • First Online:
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2105))

Abstract

The involvement of microRNAs in human pathologies is firmly established. Accordingly, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs (miRNA therapeutics). One important research area is the possible development of miRNA therapeutics in the field of rare diseases. In this respect, appealing molecules are based on peptide nucleic acids (PNAs), displaying, in their first description, a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units, and found to be excellent candidates for antisense and antigene therapies. The aim of the present article is to describe methods for determining the activity of PNAs designed to target microRNAs involved in cystic fibrosis, using as model system miR-145-5p and its target cystic fibrosis transmembrane conductance regulator (CFTR) mRNA. The methods employed to study the effects of PNAs targeting miR-145-5p are presented here by discussing data obtained using as cellular model system the human lung epithelial Calu-3 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3′UTR:

3′-Untranslated region

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

HRP:

Horseradish peroxidase

miRNA:

MicroRNA

PBS:

Phosphate-buffered saline

PNA:

Peptide nucleic acid

RISC:

RNA-induced silencing complex

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SDS:

Sodium dodecyl sulfate

TBS:

Tris-buffered saline

References

  1. He L, Hannon GJ (2010) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  Google Scholar 

  2. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  3. Monga I, Kumar M (2019) Computational resources for prediction and analysis of functional miRNA and their targetome. Methods Mol Biol 1912:215–250

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  CAS  PubMed  Google Scholar 

  6. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234:5451–5465

    Article  CAS  PubMed  Google Scholar 

  7. Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA et al (2017) Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res 2:143–150

    Article  PubMed  PubMed Central  Google Scholar 

  8. Laina A, Gatsiou A, Georgiopoulos G, Stamatelopoulos K, Stellos K (2018) RNA therapeutics in cardiovascular precision medicine. Front Physiol 9:953

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nakano M, Nakajima M (2018) Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin Drug Metab Toxicol 14:493–504

    Article  CAS  PubMed  Google Scholar 

  10. Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF (2018) Anti-miRNA oligonucleotides: a comprehensive guide for design. RNA Biol 15:338–352

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anthiya S, Griveau A, Loussouarn C, Baril P, Garnett M, Issartel JP, Garcion E (2018) MicroRNA-based drugs for brain tumors. Trends Cancer 4:222–238

    Article  CAS  PubMed  Google Scholar 

  12. Obiols-Guardia A, Guil S (2017) The role of noncoding RNAs in neurodevelopmental disorders: the case of Rett syndrome. Adv Exp Med Biol 978:23–37

    Article  CAS  PubMed  Google Scholar 

  13. Finotti A, Fabbri E, Lampronti I, Gasparello J, Borgatti M, Gambari R (2019) MicroRNAs and long non-coding RNAs in genetic diseases. Mol Diagn Ther 23:155. https://doi.org/10.1007/s40291-018-0380-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mishra MK, Loro E, Sengupta K, Wilton SD, Khurana TS (2017) Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS One 12:e0182676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Finotti A, Gambari R (2014) Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther 14:1443–1454

    Article  CAS  PubMed  Google Scholar 

  16. Gillen AE, Gosalia N, Leir SH, Harris A (2011) MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J 438:25–32

    Article  CAS  PubMed  Google Scholar 

  17. Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP, Cormet-Boyaka E (2012) MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One 7:e50837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT et al (2012) A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 109:13362–13367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA et al (2013) Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 49:544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM (2013) Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol 190:3354–3362

    Article  CAS  PubMed  Google Scholar 

  21. Dechecchi MC, Tamanini A, Cabrini G (2018) Molecular basis of cystic fibrosis: from bench to bedside. Ann Transl Med 6:334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lutful Kabir F, Ambalavanan N, Liu G, Li P, Solomon GM, Lal CV et al (2018) MicroRNA-145 antagonism reverses TGF-β inhibition of F508del CFTR correction in airway epithelia. Am J Respir Crit Care Med 197:632–643

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen PE (2001) Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 8:545–550

    Article  CAS  PubMed  Google Scholar 

  25. Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sönnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    Article  CAS  PubMed  Google Scholar 

  26. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen PE (2010) Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 16:3118–3123

    Article  CAS  PubMed  Google Scholar 

  28. Shiraishi T, Hamzavi R, Nielsen PE (2008) Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Res 36:4424–4432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nekhotiaeva A, Awasthi SK, Nielsen PE, Good L (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10:652–659

    Article  CAS  PubMed  Google Scholar 

  30. Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M, Bianchi N et al (2003) Transcription factor decoy molecules based on a peptide nucleic acid (PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 278:7500–7509

    Article  CAS  PubMed  Google Scholar 

  31. Gambari R (2001) Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 7:1839–1862

    Article  CAS  PubMed  Google Scholar 

  32. Rasmussen FW, Bendifallah N, Zachar V, Shiraishi T, Fink T, Ebbesen P et al (2006) Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers. Oligonucleotides 16:43–57

    Article  CAS  PubMed  Google Scholar 

  33. Cortesi R, Mischiati C, Borgatti M, Breda L, Romanelli A, Saviano M et al (2004) Formulations for natural and peptide nucleic acids based on cationic polymeric submicron particles. AAPS J 6:10–21

    Article  PubMed  Google Scholar 

  34. Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M et al (2002) Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol 64:609–616

    Article  CAS  PubMed  Google Scholar 

  35. Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G (2008) Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14:455–460

    Article  CAS  PubMed  Google Scholar 

  36. Torres AG, Threlfall RN, Gait MJ (2011) Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2′-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. Artif DNA PNA XNA 2(3):71–78

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bertucci A, Prasetyanto EA, Septiadi D, Manicardi A, Brognara E, Gambari R, Corradini R, De Cola L (2015) Combined delivery of temozolomide and anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small 11:5687–5695

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Tang Y, Liu Y, Dou Y (2018) Nucleic acid-based therapeutics for pulmonary diseases. AAPS PharmSciTech 19:3670–3680

    Article  CAS  PubMed  Google Scholar 

  39. Gasparello J, Manicardi A, Casnati A, Corradini R, Gambari R, Finotti A, Sansone F (2019) Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci Rep, vol 9, p 3036

    Google Scholar 

  40. Brognara E, Fabbri E, Bazzoli E, Montagner G, Ghimenton C, Eccher A et al (2014) Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol 118:19–28

    Article  CAS  PubMed  Google Scholar 

  41. Brognara E, Fabbri E, Bianchi N, Finotti A, Corradini R, Gambari R (2014) Molecular methods for validation of the biological activity of peptide nucleic acids targeting microRNAs. Methods Mol Biol 1095:165–176

    Article  CAS  PubMed  Google Scholar 

  42. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518:107–110

    Article  CAS  PubMed  Google Scholar 

  43. Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, Corradini R et al (2016) High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol 48:1029–1038

    Article  CAS  PubMed  Google Scholar 

  44. Ghidini A, Bergquist H, Murtola M, Punga T, Zain R, Strömberg R (2016) Clamping of RNA with PNA enables targeting of microRNA. Org Biomol Chem 14:5210–5213

    Article  CAS  PubMed  Google Scholar 

  45. Beavers KR, Werfel TA, Shen T, Kavanaugh TE, Kilchrist KV, Mares JW et al (2016) Porous silicon and polymer nanocomposites for delivery of peptide nucleic acids as anti-microRNA therapies. Adv Mater 28:7984–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta A, Quijano E, Liu Y, Bahal R, Scanlon SE, Song E et al (2017) Anti-tumor activity of miniPEG-γ-modified PNAs to inhibit microRNA-210 for cancer therapy. Mol Ther Nucleic Acids 9:111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM (2017) Therapeutic peptide nucleic acids: principles, limitations, and opportunities. Yale J Biol Med 90:583–598

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Manicardi A, Gambari R, de Cola L, Corradini R (2018) Preparation of anti-miR PNAs for drug development and nanomedicine. Methods Mol Biol 1811:49–63

    Article  CAS  PubMed  Google Scholar 

  49. Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R et al (2017) A peptide nucleic acid against microRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules 23(1). pii: E71

    Google Scholar 

  50. Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N, Brognara E et al (2012) Cellular uptakes, biostabilities and anti-miR-210 activities of chiral arginine-PNAs in leukaemic K562 cells. Chembiochem 13:1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, Brognara E et al (2011) Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem 6:2192–2202

    Article  CAS  PubMed  Google Scholar 

  52. Bardin P, Sonneville F, Corvol H, Tabary O (2018) Emerging microRNA therapeutic approaches for cystic fibrosis. Front Pharmacol 9:1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dutta RK, Chinnapaiyan S, Rasmussen L, Raju SV, Unwalla HJA (2019) Neutralizing aptamer to TGFBR2 and miR-145 antagonism rescue cigarette smoke- and TGF-β-mediated CFTR expression. Mol Ther 27:442–455

    Article  CAS  PubMed  Google Scholar 

  54. Marzaro G, Lampronti I, D’Aversa E, Sacchetti G, Miolo G, Vaccarin C et al (2018) Design, synthesis and biological evaluation of novel trimethylangelicin analogues targeting nuclear factor kB (NF-kB). Eur J Med Chem 151:285–293

    Article  CAS  PubMed  Google Scholar 

  55. Laselva O, Marzaro G, Vaccarin C, Lampronti I, Tamanini A, Lippi G et al (2018) Molecular mechanism of action of trimethylangelicin derivatives as CFTR modulators. Front Pharmacol 9:719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zarrilli F, Amato F, Morgillo CM, Pinto B, Santarpia G, Borbone N et al (2017) Peptide nucleic acids as miRNA target protectors for the treatment of cystic fibrosis. Molecules 22:E1144

    Article  PubMed  CAS  Google Scholar 

  57. Gambari R, Brognara E, Spandidos DA, Fabbri E (2016) Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: new trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 49:5–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nastruzzi C, Cortesi R, Esposito E, Gambari R, Borgatti M, Bianchi N et al (2000) Liposomes as carriers for DNA-PNA hybrids. J Control Release 68:237–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Fibrosi Cistica (FFC), Project “Revealing the microRNAs-transcription factors network in cystic fibrosis: from microRNA therapeutics to precision medicine (CF-miRNA-THER)” FFC#7/2018. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gambari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gambari, R., Gasparello, J., Fabbri, E., Borgatti, M., Tamanini, A., Finotti, A. (2020). Peptide Nucleic Acids for MicroRNA Targeting. In: Nielsen, P. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 2105. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0243-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0243-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0242-3

  • Online ISBN: 978-1-0716-0243-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics