Skip to main content

BDNF-Induced Intracellular Signaling

  • Protocol
  • First Online:
Brain-Derived Neurotrophic Factor (BDNF)

Part of the book series: Neuromethods ((NM,volume 143))

  • 594 Accesses

Abstract

The neurotrophin BDNF plays important roles in neuronal survival, growth, and differentiation during development. Furthermore, it has been shown to mediate long-term changes in the synaptic activity in the hippocampus and in other brain regions, which are thought to underlie learning and memory formation. Cultured hippocampal neurons express TrkB receptors and, therefore, constitute a valuable experimental model to study in vitro BDNF-induced intracellular signaling pathways. In this chapter, we describe (1) the methodology used to prepare cultured hippocampal neurons from mice (wild-type-WT or transgenic animals) and rats and (2) three different approaches to investigate BDNF signaling: Western blot and Bio-Plex for overall signaling activity and immunocytochemistry to analyze where signaling activity takes place in neurons. The Bio-Plex approach allows the simultaneous characterization of different pathways using small sample volumes and within a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11(3):272–280

    Article  CAS  Google Scholar 

  2. Almeida RD, Duarte CB (2014) p75NTR processing and signaling: functional role. In: Kostrzewa RM (ed) Handbook of neurotoxicity. Springer, New York, NY, pp 1899–1923. https://doi.org/10.1007/978-1-4614-5836-4_25

    Chapter  Google Scholar 

  3. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17(7):2295–2313

    Article  CAS  Google Scholar 

  4. Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T, Wiese S, Erne B, Sendtner M, Schaeren-Wiemers N, Korte M, Barde YA (2010) Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J Neurosci 30(5):1739–1749. https://doi.org/10.1523/JNEUROSCI.5100-09.2010

    Article  CAS  PubMed  Google Scholar 

  5. Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13(8):3394–3405

    Article  CAS  Google Scholar 

  6. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576. https://doi.org/10.1002/jnr.490350513

    Article  CAS  PubMed  Google Scholar 

  7. Acheson A, Barker PA, Alderson RF, Miller FD, Murphy RA (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7(2):265–275

    Article  CAS  Google Scholar 

  8. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021. https://doi.org/10.1038/nature04223

    Article  CAS  PubMed  Google Scholar 

  9. Climent E, Sancho-Tello M, Minana R, Barettino D, Guerri C (2000) Astrocytes in culture express the full-length Trk-B receptor and respond to brain derived neurotrophic factor by changing intracellular calcium levels: effect of ethanol exposure in rats. Neurosci Lett 288(1):53–56

    Article  CAS  Google Scholar 

  10. Araki Y, Zeng M, Zhang M, Huganir RL (2015) Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85(1):173–189. https://doi.org/10.1016/j.neuron.2014.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brewer GJ, Price PJ (1996) Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month. Neuroreport 7(9):1509–1512

    Article  CAS  Google Scholar 

  12. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1(5):2406–2415. https://doi.org/10.1038/nprot.2006.356

    Article  CAS  PubMed  Google Scholar 

  13. Fath T, Ke YD, Gunning P, Gotz J, Ittner LM (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 4(1):78–85. https://doi.org/10.1038/nprot.2008.199

    Article  CAS  PubMed  Google Scholar 

  14. Jeanneteau F, Garabedian MJ, Chao MV (2008) Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci U S A 105(12):4862–4867. https://doi.org/10.1073/pnas.0709102105

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cazorla M, Premont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121(5):1846–1857. https://doi.org/10.1172/JCI43992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A, Premont J (2010) Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One 5(3):e9777. https://doi.org/10.1371/journal.pone.0009777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramer LM, McPhail LT, Borisoff JF, Soril LJ, Kaan TK, Lee JH, Saunders JW, Hwi LP, Ramer MS (2007) Endogenous TrkB ligands suppress functional mechanosensory plasticity in the deafferented spinal cord. J Neurosci 27(21):5812–5822. https://doi.org/10.1523/JNEUROSCI.0491-07.2007

    Article  CAS  PubMed  Google Scholar 

  18. Gomes JR, Costa JT, Melo CV, Felizzi F, Monteiro P, Pinto MJ, Inacio AR, Wieloch T, Almeida RD, Graos M, Duarte CB (2012) Excitotoxicity downregulates TrkB.FL signaling and upregulates the neuroprotective truncated TrkB receptors in cultured hippocampal and striatal neurons. J Neurosci 32(13):4610–4622. https://doi.org/10.1523/JNEUROSCI.0374-12.2012

    Article  CAS  PubMed  Google Scholar 

  19. Melo CV, Okumoto S, Gomes JR, Baptista MS, Bahr BA, Frommer WB, Duarte CB (2013) Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 237:66–86. https://doi.org/10.1016/j.neuroscience.2013.01.054

    Article  CAS  PubMed  Google Scholar 

  20. Barnes DW, Sirbasku DA, Sato G (1984) Methods for preparation of media, supplements, and substrata for serum-free animal cell culture. A.R. Liss, New York, NY

    Google Scholar 

  21. Soussou WV, Yoon GJ, Brinton RD, Berger TW (2007) Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays. IEEE Trans Biomed Eng 54(7):1309–1320. https://doi.org/10.1109/TBME.2006.889195

    Article  PubMed  Google Scholar 

  22. Banker G, Goslin K (1998) Culturing nerve cells. MIT Press, Cambridge, MA

    Google Scholar 

  23. Kam L, Shain W, Turner JN, Bizios R (2001) Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin. Biomaterials 22(10):1049–1054

    Article  CAS  Google Scholar 

  24. Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, Carvalho RF, Carvalho AP, Duarte CB (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12(10):1329–1343. https://doi.org/10.1038/sj.cdd.4401662

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João R. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gomes, J.R., Lobo, A., Duarte, C.B., Grãos, M. (2017). BDNF-Induced Intracellular Signaling. In: Duarte, C., Tongiorgi, E. (eds) Brain-Derived Neurotrophic Factor (BDNF). Neuromethods, vol 143. Humana, New York, NY. https://doi.org/10.1007/7657_2017_6

Download citation

  • DOI: https://doi.org/10.1007/7657_2017_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8969-0

  • Online ISBN: 978-1-4939-8970-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics