Skip to main content

p75NTR Processing and Signaling: Functional Role

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The p75 neurotrophin receptor (p75NTR) was the first neurotrophin receptor to be identified and, more than two decades after, significant advances have been made in understanding its biological actions. p75NTR belongs to the tumor necrosis factor receptor superfamily (TNFRS) and is particularly important during developmental neural cell death and under injury conditions in the adulthood. However, recent studies shed new light into the functions of p75NTR in the nervous system. p75NTR either acting autonomously or as part of a complex with other co-receptors regulates neuronal survival and differentiation, cell cycle and proliferation, axonal outgrowth, and synaptic plasticity. Here, we will review the main findings of the last two decades as well as new findings that reveal additional and unexpected roles for p75NTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaneya, Y., Tsumoto, T., Kinoshita, S., & Hatanaka, H. (1997). Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. The Journal of Neuroscience, 17, 6707–6716.

    CAS  PubMed  Google Scholar 

  • Anastasia, A., Deinhardt, K., Chao, M. V., Will, N. E., Irmady, K., Lee, F. S., Hempstead, B. L., & Bracken, C. (2013). Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun, 4, 2490.

    PubMed  Google Scholar 

  • Angelo, M. F., Aviles-Reyes, R. X., Villarreal, A., Barker, P., Reines, A. G., & Ramos, A. J. (2009). p75NTR expression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. Journal of Neuroscience Research, 87, 1892–1903.

    CAS  PubMed  Google Scholar 

  • Armstrong, D. M., Brady, R., Hersh, L. B., Hayes, R. C., & Wiley, R. G. (1991). Expression of choline acetyltransferase and nerve growth factor receptor within hypoglossal motoneurons following nerve injury. The Journal of Comparative Neurology, 304, 596–607.

    CAS  PubMed  Google Scholar 

  • Aurikko, J. P., Ruotolo, B. T., Grossmann, J. G., Moncrieffe, M. C., Stephens, E., Leppanen, V. M., Robinson, C. V., Saarma, M., Bradshaw, R. A., & Blundell, T. L. (2005). Characterization of symmetric complexes of nerve growth factor and the ectodomain of the pan-neurotrophin receptor, p75NTR. The Journal of Biological Chemistry, 280, 33453–33460.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker, P. A. (1998). p75NTR: A study in contrasts. Cell Death and Differentiation, 5, 346–356.

    CAS  PubMed  Google Scholar 

  • Barker, P. A. (2004). p75NTR is positively promiscuous: Novel partners and new insights. Neuron, 42, 529–533.

    CAS  PubMed  Google Scholar 

  • Barrett, G. L., Reid, C. A., Tsafoulis, C., Zhu, W., Williams, D. A., Paolini, A. G., Trieu, J., & Murphy, M. (2010). Enhanced spatial memory and hippocampal long-term potentiation in p75 neurotrophin receptor knockout mice. Hippocampus, 20, 145–152.

    CAS  PubMed  Google Scholar 

  • Beattie, M. S., Harrington, A. W., Lee, R., Kim, J. Y., Boyce, S. L., Longo, F. M., Bresnahan, J. C., Hempstead, B. L., & Yoon, S. O. (2002). ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 36, 375–386.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ben-Zvi, A., Ben-Gigi, L., Klein, H., & Behar, O. (2007). Modulation of semaphorin3A activity by p75 neurotrophin receptor influences peripheral axon patterning. The Journal of Neuroscience, 27, 13000–13011.

    CAS  PubMed  Google Scholar 

  • Bernabeu, R. O., & Longo, F. M. (2010). The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neuroscience, 11, 136.

    PubMed Central  PubMed  Google Scholar 

  • Bibel, M., Hoppe, E., & Barde, Y. A. (1999). Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. The EMBO Journal, 18, 616–622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bronfman, F. C., & Fainzilber, M. (2004). Multi-tasking by the p75 neurotrophin receptor: Sortilin things out? EMBO Reports, 5, 867–871.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buck, C. R., Martinez, H. J., Chao, M. V., & Black, I. B. (1988). Differential expression of the nerve growth factor receptor gene in multiple brain areas. Brain Research. Developmental Brain Research, 44, 259–268.

    CAS  PubMed  Google Scholar 

  • Carroll, S. L., Silos-Santiago, I., Frese, S. E., Ruit, K. G., Milbrandt, J., & Snider, W. D. (1992). Dorsal root ganglion neurons expressing trk are selectively sensitive to NGF deprivation in utero. Neuron, 9, 779–788.

    CAS  PubMed  Google Scholar 

  • Carvalho, A. L., Caldeira, M. V., Santos, S. D., & Duarte, C. B. (2008). Role of the brain-derived neurotrophic factor at glutamatergic synapses. British Journal of Pharmacology, 153(Suppl 1), S310–S324.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceni, C., Kommaddi, R. P., Thomas, R., Vereker, E., Liu, X., McPherson, P. S., Ritter, B., & Barker, P. A. (2010). The p75NTR intracellular domain generated by neurotrophin-induced receptor cleavage potentiates Trk signaling. Journal of Cell Science, 123, 2299–2307.

    CAS  PubMed  Google Scholar 

  • Chao, M. V. (2003). Neurotrophins and their receptors: A convergence point for many signalling pathways. Nature Reviews. Neuroscience, 4, 299–309.

    CAS  PubMed  Google Scholar 

  • Chen, G., Kolbeck, R., Barde, Y. A., Bonhoeffer, T., & Kossel, A. (1999). Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. The Journal of Neuroscience, 19, 7983–7990.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Zeng, J., Cen, L., Wang, X., Yao, G., Wang, W., Qi, W., & Kong, K. (2009). Multiple roles of the p75 neurotrophin receptor in the nervous system. The Journal of International Medical Research, 37, 281–288.

    CAS  PubMed  Google Scholar 

  • Chittka, A., & Chao, M. V. (1999). Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 96, 10705–10710.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chittka, A., Arevalo, J. C., Rodriguez-Guzman, M., Perez, P., Chao, M. V., & Sendtner, M. (2004). The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. The Journal of Cell Biology, 164, 985–996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clary, D. O., & Reichardt, L. F. (1994). An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3. Proceedings of the National Academy of Sciences of the United States of America, 91, 11133–11137.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen-Cory, S., Dreyfus, C. F., & Black, I. B. (1991). NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. The Journal of Neuroscience, 11, 462–471.

    CAS  PubMed  Google Scholar 

  • Coulson, E. J., Reid, K., Baca, M., Shipham, K. A., Hulett, S. M., Kilpatrick, T. J., & Bartlett, P. F. (2000). Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. The Journal of Biological Chemistry, 275, 30537–30545.

    CAS  PubMed  Google Scholar 

  • Coulson, E. J., May, L. M., Osborne, S. L., Reid, K., Underwood, C. K., Meunier, F. A., Bartlett, P. F., & Sah, P. (2008). p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. The Journal of Neuroscience, 28, 315–324.

    CAS  PubMed  Google Scholar 

  • Cragnolini, A. B., & Friedman, W. J. (2008). The function of p75NTR in glia. Trends in Neurosciences, 31, 99–104.

    CAS  PubMed  Google Scholar 

  • Cragnolini, A. B., Huang, Y., Gokina, P., & Friedman, W. J. (2009). Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor. Glia, 57, 1386–1392.

    PubMed Central  PubMed  Google Scholar 

  • Cragnolini, A. B., Volosin, M., Huang, Y., & Friedman, W. J. (2012). Nerve growth factor induces cell cycle arrest of astrocytes. Developmental Neurobiology, 72, 766–776.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dechant, G., & Barde, Y. A. (2002). The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nature Neuroscience, 5, 1131–1136.

    CAS  PubMed  Google Scholar 

  • Deinhardt, K., Kim, T., Spellman, D. S., Mains, R. E., Eipper, B. A., Neubert, T. A., Chao, M. V., & Hempstead, B. L. (2011). Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling, 4, ra82.

    PubMed Central  PubMed  Google Scholar 

  • Domeniconi, M., Zampieri, N., Spencer, T., Hilaire, M., Mellado, W., Chao, M. V., & Filbin, M. T. (2005). MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron, 46, 849–855.

    CAS  PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Hallbook, F., Ebendal, T., Shooter, E. M., Radeke, M. J., Misko, T. P., & Persson, H. (1988). Developmental and regional expression of beta-nerve growth factor receptor mRNA in the chick and rat. Neuron, 1, 983–996.

    CAS  PubMed  Google Scholar 

  • Ernfors, P., Henschen, A., Olson, L., & Persson, H. (1989). Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron, 2, 1605–1613.

    CAS  PubMed  Google Scholar 

  • Esposito, D., Patel, P., Stephens, R. M., Perez, P., Chao, M. V., Kaplan, D. R., & Hempstead, B. L. (2001). The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. The Journal of Biological Chemistry, 276, 32687–32695.

    CAS  PubMed  Google Scholar 

  • Feng, D., Kim, T., Ozkan, E., Light, M., Torkin, R., Teng, K. K., Hempstead, B. L., & Garcia, K. C. (2010). Molecular and structural insight into proNGF engagement of p75NTR and sortilin. Journal of Molecular Biology, 396, 967–984.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferri, C. C., Ghasemlou, N., Bisby, M. A., & Kawaja, M. D. (2002). Nerve growth factor alters p75 neurotrophin receptor-induced effects in mouse facial motoneurons following axotomy. Brain Research, 950, 180–185.

    CAS  PubMed  Google Scholar 

  • Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706–709.

    CAS  PubMed  Google Scholar 

  • Fournier, A. E., GrandPre, T., & Strittmatter, S. M. (2001). Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature, 409, 341–346.

    CAS  PubMed  Google Scholar 

  • Frade, J. M. (2005). Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. The Journal of Neuroscience, 25, 1407–1411.

    CAS  PubMed  Google Scholar 

  • Frankowski, H., Castro-Obregon, S., del Rio, G., Rao, R. V., & Bredesen, D. E. (2002). PLAIDD, a type II death domain protein that interacts with p75 neurotrophin receptor. Neuromolecular Medicine, 1, 153–170.

    CAS  PubMed  Google Scholar 

  • Friedman, W. J., Thakur, S., Seidman, L., & Rabson, A. B. (1996). Regulation of nerve growth factor mRNA by interleukin-1 in rat hippocampal astrocytes is mediated by NFkappaB. The Journal of Biological Chemistry, 271, 31115–31120.

    CAS  PubMed  Google Scholar 

  • Furshpan, E. J., MacLeish, P. R., O’Lague, P. H., & Potter, D. D. (1976). Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: Evidence for cholinergic, adrenergic, and dual-function neurons. Proceedings of the National Academy of Sciences of the United States of America, 73, 4225–4229.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gascon, E., Vutskits, L., Zhang, H., Barral-Moran, M. J., Kiss, P. J., Mas, C., & Kiss, J. Z. (2005). Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. The European Journal of Neuroscience, 21, 69–80.

    CAS  PubMed  Google Scholar 

  • Geetha, T., Kenchappa, R. S., Wooten, M. W., & Carter, B. D. (2005). TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. The EMBO Journal, 24, 3859–3868.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giuliani, A., D’Intino, G., Paradisi, M., Giardino, L., & Calza, L. (2004). p75(NTR)-immunoreactivity in the subventricular zone of adult male rats: Expression by cycling cells. Journal of Molecular Histology, 35, 749–758.

    CAS  PubMed  Google Scholar 

  • Gong, Y., Cao, P., Yu, H. J., & Jiang, T. (2008). Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature, 454, 789–793.

    CAS  PubMed  Google Scholar 

  • Greferath, U., Bennie, A., Kourakis, A., Bartlett, P. F., Murphy, M., & Barrett, G. L. (2000). Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. The European Journal of Neuroscience, 12, 885–893.

    CAS  PubMed  Google Scholar 

  • Hanbury, R., Charles, V., Chen, E. Y., Leventhal, L., Rosenstein, J. M., Mufson, E. J., & Kordower, J. H. (2002). Excitotoxic and metabolic damage to the rodent striatum: Role of the P75 neurotrophin receptor and glial progenitors. The Journal of Comparative Neurology, 444, 291–305.

    CAS  PubMed  Google Scholar 

  • He, X. L., & Garcia, K. C. (2004). Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science, 304, 870–875.

    CAS  PubMed  Google Scholar 

  • Hefti, F., Hartikka, J., Salvatierra, A., Weiner, W. J., & Mash, D. C. (1986). Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neuroscience Letters, 69, 37–41.

    CAS  PubMed  Google Scholar 

  • Hempstead, B. L., Martin-Zanca, D., Kaplan, D. R., Parada, L. F., & Chao, M. V. (1991). High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature, 350, 678–683.

    CAS  PubMed  Google Scholar 

  • Henry, M. A., Westrum, L. E., Bothwell, M., & Press, S. (1994). Electron microscopic localization of nerve growth factor receptor (p75)-immunoreactivity in pars caudalis/medullary dorsal horn of the cat. Brain Research, 642, 137–145.

    CAS  PubMed  Google Scholar 

  • Hermans-Borgmeyer, I., Hermey, G., Nykjaer, A., & Schaller, C. (1999). Expression of the 100-kDa neurotensin receptor sortilin during mouse embryonal development. Brain Research. Molecular Brain Research, 65, 216–219.

    CAS  PubMed  Google Scholar 

  • Herrup, K., & Shooter, E. M. (1973). Properties of the beta nerve growth factor receptor of avian dorsal root ganglia. Proceedings of the National Academy of Sciences of the United States of America, 70, 3884–3888.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heuer, J. G., Fatemie-Nainie, S., Wheeler, E. F., & Bothwell, M. (1990). Structure and developmental expression of the chicken NGF receptor. Developmental Biology, 137, 287–304.

    CAS  PubMed  Google Scholar 

  • Horton, A., Laramee, G., Wyatt, S., Shih, A., Winslow, J., & Davies, A. M. (1997). NGF binding to p75 enhances the sensitivity of sensory and sympathetic neurons to NGF at different stages of development. Molecular and Cellular Neurosciences, 10, 162–172.

    CAS  PubMed  Google Scholar 

  • Hosomi, S., Yamashita, T., Aoki, M., & Tohyama, M. (2003). The p75 receptor is required for BDNF-induced differentiation of neural precursor cells. Biochemical and Biophysical Research Communications, 301, 1011–1015.

    CAS  PubMed  Google Scholar 

  • Huber, L. J., & Chao, M. V. (1995). A potential interaction of p75 and trkA NGF receptors revealed by affinity crosslinking and immunoprecipitation. Journal of Neuroscience Research, 40, 557–563.

    CAS  PubMed  Google Scholar 

  • Huber, K. M., Sawtell, N. B., & Bear, M. F. (1998). Brain-derived neurotrophic factor alters the synaptic modification threshold in visual cortex. Neuropharmacology, 37, 571–579.

    CAS  PubMed  Google Scholar 

  • Iacaruso, M. F., Galli, S., Marti, M., Villalta, J. I., Estrin, D. A., Jares-Erijman, E. A., & Pietrasanta, L. I. (2011). Structural model for p75(NTR)-TrkA intracellular domain interaction: A combined FRET and bioinformatics study. Journal of Molecular Biology, 414, 681–698.

    CAS  PubMed  Google Scholar 

  • Ibanez, C. F., & Simi, A. (2012). p75 neurotrophin receptor signaling in nervous system injury and degeneration: Paradox and opportunity. Trends in Neurosciences, 37, 431–440.

    Google Scholar 

  • Ito, H., Nomoto, H., & Furukawa, S. (2002). Role of low-affinity p75 receptor in nerve growth factor-inducible growth arrest of PC12 cells. Journal of Neuroscience Research, 69, 653–661.

    CAS  PubMed  Google Scholar 

  • Ito, H., Nomoto, H., & Furukawa, S. (2003). Growth arrest of PC12 cells by nerve growth factor is dependent on the phosphatidylinositol 3-kinase/Akt pathway via p75 neurotrophin receptor. Journal of Neuroscience Research, 72, 211–217.

    PubMed  Google Scholar 

  • Jansen, P., Giehl, K., Nyengaard, J. R., Teng, K., Lioubinski, O., Sjoegaard, S. S., Breiderhoff, T., Gotthardt, M., Lin, F., Eilers, A., et al. (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nature Neuroscience, 10, 1449–1457.

    CAS  PubMed  Google Scholar 

  • Jung, K. M., Tan, S., Landman, N., Petrova, K., Murray, S., Lewis, R., Kim, P. K., Kim, D. S., Ryu, S. H., Chao, M. V., & Kim, T. W. (2003). Regulated intramembrane proteolysis of the p75 neurotrophin receptor modulates its association with the TrkA receptor. The Journal of Biological Chemistry, 278, 42161–42169.

    CAS  PubMed  Google Scholar 

  • Junier, M. P., Suzuki, F., Onteniente, B., & Peschanski, M. (1994). Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Brain Research. Molecular Brain Research, 24, 247–260.

    CAS  PubMed  Google Scholar 

  • Kang, H., & Schuman, E. M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science, 267, 1658–1662.

    CAS  PubMed  Google Scholar 

  • Kanning, K. C., Hudson, M., Amieux, P. S., Wiley, J. C., Bothwell, M., & Schecterson, L. C. (2003). Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. The Journal of Neuroscience, 23, 5425–5436.

    CAS  PubMed  Google Scholar 

  • Kenchappa, R. S., Zampieri, N., Chao, M. V., Barker, P. A., Teng, H. K., Hempstead, B. L., & Carter, B. D. (2006). Ligand-dependent cleavage of the p75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron, 50, 219–232.

    CAS  PubMed  Google Scholar 

  • Kenchappa, R. S., Tep, C., Korade, Z., Urra, S., Bronfman, F. C., Yoon, S. O., & Carter, B. D. (2010). p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. The Journal of Biological Chemistry, 285, 20358–20368.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, T., & Hempstead, B. L. (2009). NRH2 is a trafficking switch to regulate sortilin localization and permit proneurotrophin-induced cell death. The EMBO Journal, 28, 1612–1623.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koh, S., Oyler, G. A., & Higgins, G. A. (1989). Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Experimental Neurology, 106, 209–221.

    CAS  PubMed  Google Scholar 

  • Kohn, J., Aloyz, R. S., Toma, J. G., Haak-Frendscho, M., & Miller, F. D. (1999). Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. The Journal of Neuroscience, 19, 5393–5408.

    CAS  PubMed  Google Scholar 

  • Kommaddi, R. P., Thomas, R., Ceni, C., Daigneault, K., & Barker, P. A. (2011). Trk-dependent ADAM17 activation facilitates neurotrophin survival signaling. The FASEB Journal, 25, 2061–2070.

    CAS  Google Scholar 

  • Korte, M., Griesbeck, O., Gravel, C., Carroll, P., Staiger, V., Thoenen, H., & Bonhoeffer, T. (1996). Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 12547–12552.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, K. F., Davies, A. M., & Jaenisch, R. (1994). p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development, 120, 1027–1033.

    CAS  PubMed  Google Scholar 

  • Lee, T. H., Abe, K., Kogure, K., & Itoyama, Y. (1995). Expressions of nerve growth factor and p75 low affinity receptor after transient forebrain ischemia in gerbil hippocampal CA1 neurons. Journal of Neuroscience Research, 41, 684–695.

    CAS  PubMed  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.

    CAS  PubMed  Google Scholar 

  • Lim, Y. S., McLaughlin, T., Sung, T. C., Santiago, A., Lee, K. F., & O’Leary, D. D. (2008). p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron, 59, 746–758.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lockhart, S. T., Turrigiano, G. G., & Birren, S. J. (1997). Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. The Journal of Neuroscience, 17, 9573–9582.

    CAS  PubMed  Google Scholar 

  • Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews. Neuroscience, 6, 603–614.

    CAS  PubMed  Google Scholar 

  • Matsumoto, T., Rauskolb, S., Polack, M., Klose, J., Kolbeck, R., Korte, M., & Barde, Y. A. (2008). Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nature Neuroscience, 11, 131–133.

    CAS  PubMed  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., Levesque, M., Allaire, N., Perrin, S., Sands, B., et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neuroscience, 7, 221–228.

    CAS  PubMed  Google Scholar 

  • Moscatelli, I., Pierantozzi, E., Camaioni, A., Siracusa, G., & Campagnolo, L. (2009). p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Experimental Cell Research, 315, 3220–3232.

    CAS  PubMed  Google Scholar 

  • Mufson, E. J., Higgins, G. A., & Kordower, J. H. (1991). Nerve growth factor receptor immunoreactivity in the new world monkey (Cebus apella) and human cerebellum. The Journal of Comparative Neurology, 308, 555–575.

    CAS  PubMed  Google Scholar 

  • Murray, S. S., Perez, P., Lee, R., Hempstead, B. L., & Chao, M. V. (2004). A novel p75 neurotrophin receptor-related protein, NRH2, regulates nerve growth factor binding to the TrkA receptor. The Journal of Neuroscience, 24, 2742–2749.

    CAS  PubMed  Google Scholar 

  • Niederost, B., Oertle, T., Fritsche, J., McKinney, R. A., & Bandtlow, C. E. (2002). Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. The Journal of Neuroscience, 22, 10368–10376.

    CAS  PubMed  Google Scholar 

  • Nykjaer, A., Lee, R., Teng, K. K., Jansen, P., Madsen, P., Nielsen, M. S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T. E., et al. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature, 427, 843–848.

    CAS  PubMed  Google Scholar 

  • Nykjaer, A., Willnow, T. E., & Petersen, C. M. (2005). p75NTR – live or let die. Current Opinion in Neurobiology, 15, 49–57.

    CAS  PubMed  Google Scholar 

  • Oderfeld-Nowak, B., & Bacia, A. (1994). Expression of astroglial nerve growth factor in damaged brain. Acta Neurobiologiae Experimentalis (Wars), 54, 73–80.

    CAS  Google Scholar 

  • Oderfeld-Nowak, B., Orzylowska-Sliwinska, O., Soltys, Z., Zaremba, M., Januszewski, S., Janeczko, K., & Mossakowski, M. (2003). Concomitant up-regulation of astroglial high and low affinity nerve growth factor receptors in the CA1 hippocampal area following global transient cerebral ischemia in rat. Neuroscience, 120, 31–40.

    CAS  PubMed  Google Scholar 

  • Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., Teng, K. K., Yung, W. H., Hempstead, B. L., & Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306, 487–491.

    CAS  PubMed  Google Scholar 

  • Park, J. B., Yiu, G., Kaneko, S., Wang, J., Chang, J., He, X. L., Garcia, K. C., & He, Z. (2005). A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron, 45, 345–351.

    CAS  PubMed  Google Scholar 

  • Park, K. J., Grosso, C. A., Aubert, I., Kaplan, D. R., & Miller, F. D. (2010). p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nature Neuroscience, 13, 559–566.

    CAS  PubMed  Google Scholar 

  • Parkhurst, C. N., Zampieri, N., & Chao, M. V. (2010). Nuclear localization of the p75 neurotrophin receptor intracellular domain. The Journal of Biological Chemistry, 285, 5361–5368.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasterkamp, R. J. (2012). Getting neural circuits into shape with semaphorins. Nature Reviews. Neuroscience, 13, 605–618.

    CAS  PubMed  Google Scholar 

  • Patterson, S. L., Abel, T., Deuel, T. A., Martin, K. C., Rose, J. C., & Kandel, E. R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 16, 1137–1145.

    CAS  PubMed  Google Scholar 

  • Paul, C. E., Vereker, E., Dickson, K. M., & Barker, P. A. (2004). A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. The Journal of Neuroscience, 24, 1917–1923.

    CAS  PubMed  Google Scholar 

  • Peterson, D. A., Dickinson-Anson, H. A., Leppert, J. T., Lee, K. F., & Gage, F. H. (1999). Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. The Journal of Comparative Neurology, 404, 1–20.

    CAS  PubMed  Google Scholar 

  • Petratos, S., Gonzales, M. F., Azari, M. F., Marriott, M., Minichiello, R. A., Shipham, K. A., Profyris, C., Nicolaou, A., Boyle, K., Cheema, S. S., & Kilpatrick, T. J. (2004). Expression of the low-affinity neurotrophin receptor, p75(NTR), is upregulated by oligodendroglial progenitors adjacent to the subventricular zone in response to demyelination. Glia, 48, 64–75.

    PubMed  Google Scholar 

  • Pincheira, R., Baerwald, M., Dunbar, J. D., & Donner, D. B. (2009). Sall2 is a novel p75NTR-interacting protein that links NGF signalling to cell cycle progression and neurite outgrowth. The EMBO Journal, 28, 261–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pozzo-Miller, L. D., Gottschalk, W., Zhang, L., McDermott, K., Du, J., Gopalakrishnan, R., Oho, C., Sheng, Z. H., & Lu, B. (1999). Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. The Journal of Neuroscience, 19, 4972–4983.

    CAS  PubMed  Google Scholar 

  • Quistgaard, E. M., Madsen, P., Groftehauge, M. K., Nissen, P., Petersen, C. M., & Thirup, S. S. (2009). Ligands bind to sortilin in the tunnel of a ten-bladed beta-propeller domain. Nature Structural & Molecular Biology, 16, 96–98.

    CAS  Google Scholar 

  • Rodriguez-Tebar, A., Dechant, G., Gotz, R., & Barde, Y. A. (1992). Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. The EMBO Journal, 11, 917–922.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers, M. L., Bailey, S., Matusica, D., Nicholson, I., Muyderman, H., Pagadala, P. C., Neet, K. E., Zola, H., Macardle, P., & Rush, R. A. (2010). ProNGF mediates death of natural killer cells through activation of the p75NTR-sortilin complex. Journal of Neuroimmunology, 226, 93–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosch, H., Schweigreiter, R., Bonhoeffer, T., Barde, Y. A., & Korte, M. (2005). The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 102, 7362–7367.

    PubMed Central  PubMed  Google Scholar 

  • Roux, P. P., & Barker, P. A. (2002). Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology, 67, 203–233.

    CAS  PubMed  Google Scholar 

  • Roux, P. P., Colicos, M. A., Barker, P. A., & Kennedy, T. E. (1999). p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. The Journal of Neuroscience, 19, 6887–6896.

    CAS  PubMed  Google Scholar 

  • Rudkin, B. B., Lazarovici, P., Levi, B. Z., Abe, Y., Fujita, K., & Guroff, G. (1989). Cell cycle-specific action of nerve growth factor in PC12 cells: Differentiation without proliferation. The EMBO Journal, 8, 3319–3325.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryden, M., Murray-Rust, J., Glass, D., Ilag, L. L., Trupp, M., Yancopoulos, G. D., McDonald, N. Q., & Ibanez, C. F. (1995). Functional analysis of mutant neurotrophins deficient in low-affinity binding reveals a role for p75LNGFR in NT-4 signalling. The EMBO Journal, 14, 1979–1990.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salehi, A. H., Roux, P. P., Kubu, C. J., Zeindler, C., Bhakar, A., Tannis, L. L., Verdi, J. M., & Barker, P. A. (2000). NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron, 27, 279–288.

    CAS  PubMed  Google Scholar 

  • Salehi, A. H., Xanthoudakis, S., & Barker, P. A. (2002). NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. The Journal of Biological Chemistry, 277, 48043–48050.

    CAS  PubMed  Google Scholar 

  • Santos, A. R., Comprido, D., & Duarte, C. B. (2010). Regulation of local translation at the synapse by BDNF. Progress in Neurobiology, 92, 505–516.

    CAS  PubMed  Google Scholar 

  • Sarret, P., Krzywkowski, P., Segal, L., Nielsen, M. S., Petersen, C. M., Mazella, J., Stroh, T., & Beaudet, A. (2003). Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. The Journal of Comparative Neurology, 461, 483–505.

    CAS  PubMed  Google Scholar 

  • Schatteman, G. C., Gibbs, L., Lanahan, A. A., Claude, P., & Bothwell, M. (1988). Expression of NGF receptor in the developing and adult primate central nervous system. The Journal of Neuroscience, 8, 860–873.

    CAS  PubMed  Google Scholar 

  • Schatteman, G. C., Langer, T., Lanahan, A. A., & Bothwell, M. A. (1993). Distribution of the 75-kD low-affinity nerve growth factor receptor in the primate peripheral nervous system. Somatosensory & Motor Research, 10, 415–432.

    CAS  Google Scholar 

  • Schecterson, L. C., & Bothwell, M. (2010). Neurotrophin receptors: Old friends with new partners. Developmental Neurobiology, 70, 332–338.

    CAS  PubMed  Google Scholar 

  • Shao, Z., Browning, J. L., Lee, X., Scott, M. L., Shulga-Morskaya, S., Allaire, N., Thill, G., Levesque, M., Sah, D., McCoy, J. M., et al. (2005). TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration. Neuron, 45, 353–359.

    CAS  PubMed  Google Scholar 

  • Shelton, D. L., & Reichardt, L. F. (1986). Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: Level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proceedings of the National Academy of Sciences of the United States of America, 83, 2714–2718.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh, K. K., & Miller, F. D. (2005). Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron, 45, 837–845.

    CAS  PubMed  Google Scholar 

  • Singh, K. K., Park, K. J., Hong, E. J., Kramer, B. M., Greenberg, M. E., Kaplan, D. R., & Miller, F. D. (2008). Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nature Neuroscience, 11, 649–658.

    CAS  PubMed  Google Scholar 

  • Skeldal, S., Matusica, D., Nykjaer, A., & Coulson, E. J. (2011). Proteolytic processing of the p75 neurotrophin receptor: A prerequisite for signalling?: Neuronal life, growth and death signalling are crucially regulated by intra-membrane proteolysis and trafficking of p75(NTR). Bioessays, 33, 614–625.

    CAS  PubMed  Google Scholar 

  • Slonimsky, J. D., Mattaliano, M. D., Moon, J. I., Griffith, L. C., & Birren, S. J. (2006). Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proceedings of the National Academy of Sciences of the United States of America, 103, 2915–2919.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sofroniew, M. V., Isacson, O., & O’Brien, T. S. (1989). Nerve growth factor receptor immunoreactivity in the rat suprachiasmatic nucleus. Brain Research, 476, 358–362.

    CAS  PubMed  Google Scholar 

  • Song, W., Volosin, M., Cragnolini, A. B., Hempstead, B. L., & Friedman, W. J. (2010). ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. The Journal of Neuroscience, 30, 15608–15615.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sotthibundhu, A., Li, Q. X., Thangnipon, W., & Coulson, E. J. (2009). Abeta(1–42) stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiology of Aging, 30, 1975–1985.

    CAS  PubMed  Google Scholar 

  • Springer, J. E., Koh, S., Tayrien, M. W., & Loy, R. (1987). Basal forebrain magnocellular neurons stain for nerve growth factor receptor: Correlation with cholinergic cell bodies and effects of axotomy. Journal of Neuroscience Research, 17, 111–118.

    CAS  PubMed  Google Scholar 

  • Tcherpakov, M., Bronfman, F. C., Conticello, S. G., Vaskovsky, A., Levy, Z., Niinobe, M., Yoshikawa, K., Arenas, E., & Fainzilber, M. (2002). The p75 neurotrophin receptor interacts with multiple MAGE proteins. The Journal of Biological Chemistry, 277, 49101–49104.

    CAS  PubMed  Google Scholar 

  • Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., Kermani, P., Torkin, R., Chen, Z. Y., Lee, F. S., et al. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. The Journal of Neuroscience, 25, 5455–5463.

    CAS  PubMed  Google Scholar 

  • Underwood, C. K., Reid, K., May, L. M., Bartlett, P. F., & Coulson, E. J. (2008). Palmitoylation of the C-terminal fragment of p75(NTR) regulates death signaling and is required for subsequent cleavage by gamma-secretase. Molecular and Cellular Neurosciences, 37, 346–358.

    CAS  PubMed  Google Scholar 

  • Unsain, N., Nunez, N., Anastasia, A., & Masco, D. H. (2008). Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: An initial event in neuronal injury induction. Neuroscience, 154, 978–993.

    CAS  PubMed  Google Scholar 

  • Urdiales, J. L., Becker, E., Andrieu, M., Thomas, A., Jullien, J., van Grunsven, L. A., Menut, S., Evan, G. I., Martin-Zanca, D., & Rudkin, B. B. (1998). Cell cycle phase-specific surface expression of nerve growth factor receptors TrkA and p75(NTR). The Journal of Neuroscience, 18, 6767–6775.

    CAS  PubMed  Google Scholar 

  • Urfer, R., Tsoulfas, P., Soppet, D., Escandon, E., Parada, L. F., & Presta, L. G. (1994). The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin. The EMBO Journal, 13, 5896–5909.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verge, V. M., Merlio, J. P., Grondin, J., Ernfors, P., Persson, H., Riopelle, R. J., Hokfelt, T., & Richardson, P. M. (1992). Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: Responses to injury and infusion of NGF. The Journal of Neuroscience, 12, 4011–4022.

    CAS  PubMed  Google Scholar 

  • Vilar, M., Charalampopoulos, I., Kenchappa, R. S., Reversi, A., Klos-Applequist, J. M., Karaca, E., Simi, A., Spuch, C., Choi, S., Friedman, W. J., et al. (2009a). Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. Journal of Cell Science, 122, 3351–3357.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vilar, M., Charalampopoulos, I., Kenchappa, R. S., Simi, A., Karaca, E., Reversi, A., Choi, S., Bothwell, M., Mingarro, I., Friedman, W. J., et al. (2009b). Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron, 62, 72–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volosin, M., Song, W., Almeida, R. D., Kaplan, D. R., Hempstead, B. L., & Friedman, W. J. (2006). Interaction of survival and death signaling in basal forebrain neurons: Roles of neurotrophins and proneurotrophins. The Journal of Neuroscience, 26, 7756–7766.

    CAS  PubMed  Google Scholar 

  • Volosin, M., Trotter, C., Cragnolini, A., Kenchappa, R. S., Light, M., Hempstead, B. L., Carter, B. D., & Friedman, W. J. (2008). Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures. The Journal of Neuroscience, 28, 9870–9879.

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Schack, D., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M., & Dechant, G. (2001). Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nature Neuroscience, 4, 977–978.

    Google Scholar 

  • Wang, K. C., Kim, J. A., Sivasankaran, R., Segal, R., & He, Z. (2002). P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature, 420, 74–78.

    CAS  PubMed  Google Scholar 

  • Wang, X., Shao, Z., Zetoune, F. S., Zeidler, M. G., Gowrishankar, K., & Vincenz, C. (2003). NRADD, a novel membrane protein with a death domain involved in mediating apoptosis in response to ER stress. Cell Death and Differentiation, 10, 580–591.

    CAS  PubMed  Google Scholar 

  • Wong, S. T., Henley, J. R., Kanning, K. C., Huang, K. H., Bothwell, M., & Poo, M. M. (2002). A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nature Neuroscience, 5, 1302–1308.

    CAS  PubMed  Google Scholar 

  • Woo, N. H., Teng, H. K., Siao, C. J., Chiaruttini, C., Pang, P. T., Milner, T. A., Hempstead, B. L., & Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience, 8, 1069–1077.

    CAS  PubMed  Google Scholar 

  • Wright, J. W., Alt, J. A., Turner, G. D., & Krueger, J. M. (2004). Differences in spatial learning comparing transgenic p75 knockout, New Zealand Black, C57BL/6, and Swiss Webster mice. Behavioural Brain Research, 153, 453–458.

    CAS  PubMed  Google Scholar 

  • Xu, N. J., & Henkemeyer, M. (2012). Ephrin reverse signaling in axon guidance and synaptogenesis. Seminars in Cell & Developmental Biology, 23, 58–64.

    CAS  Google Scholar 

  • Yaar, M., Zhai, S., Pilch, P. F., Doyle, S. M., Eisenhauer, P. B., Fine, R. E., & Gilchrest, B. A. (1997). Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. Journal of Clinical Investigation, 100, 2333–2340.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaar, M., Zhai, S., Fine, R. E., Eisenhauer, P. B., Arble, B. L., Stewart, K. B., & Gilchrest, B. A. (2002). Amyloid beta binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. The Journal of Biological Chemistry, 277, 7720–7725.

    CAS  PubMed  Google Scholar 

  • Yamashita, T., & Tohyama, M. (2003). The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neuroscience, 6, 461–467.

    CAS  PubMed  Google Scholar 

  • Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24, 585–593.

    CAS  PubMed  Google Scholar 

  • Yamashita, T., Higuchi, H., & Tohyama, M. (2002). The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. The Journal of Cell Biology, 157, 565–570.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan, Q., & Johnson, E. M., Jr. (1987). A quantitative study of the developmental expression of nerve growth factor (NGF) receptor in rats. Developmental Biology, 121, 139–148.

    CAS  PubMed  Google Scholar 

  • Yan, Q., & Johnson, E. M., Jr. (1988). An immunohistochemical study of the nerve growth factor receptor in developing rats. The Journal of Neuroscience, 8, 3481–3498.

    CAS  PubMed  Google Scholar 

  • Yang, B., Slonimsky, J. D., & Birren, S. J. (2002). A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nature Neuroscience, 5, 539–545.

    CAS  PubMed  Google Scholar 

  • Yang, F., Je, H. S., Ji, Y., Nagappan, G., Hempstead, B., & Lu, B. (2009). Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. The Journal of Cell Biology, 185, 727–741.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, K. M., Merson, T. D., Sotthibundhu, A., Coulson, E. J., & Bartlett, P. F. (2007). p75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. The Journal of Neuroscience, 27, 5146–5155.

    CAS  PubMed  Google Scholar 

  • Zagrebelsky, M., Holz, A., Dechant, G., Barde, Y. A., Bonhoeffer, T., & Korte, M. (2005). The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. The Journal of Neuroscience, 25, 9989–9999.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is supported by FEDER through Programa Operacional Factores de Competitividade (COMPETE) and by national funds through Fundação para a Ciência e a Tecnologia (FCT) through Grants PTDC/SAU-NEU/104100/2008, EXPL/NEU-NMC/0541/2012, PTDC/SAU-NEU/104297/2008, PTDC/SAU-NMC/120144/2010, PEst-C/SAU/LA0001/2013-2014, and by Marie Curie Actions, International Reintegration Grant, 7th Framework Programme, EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos B. Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Almeida, R.D., Duarte, C.B. (2014). p75NTR Processing and Signaling: Functional Role. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_25

Download citation

Publish with us

Policies and ethics