Skip to main content

Modeling Human Paraxial Mesoderm Development with Pluripotent Stem Cells

  • Protocol
  • First Online:
Embryo Models In Vitro

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2767))

Abstract

Paraxial mesoderm in the early embryo is segmented into epithelial blocks called somites that establish the metameric organization of the vertebrate body plan. Somites are sequentially formed from head to tail in a rhythmic manner controlled by an oscillating gene regulatory network known as the segmentation clock. We know very little about this important process during human development due to limited access to human embryos and ethical concerns. To bypass these difficulties, model systems derived from human pluripotent stem cells have been established. Here, we detail three protocols modeling different aspects of human paraxial mesoderm development in vitro: a 2D cell monolayer system recapitulating dynamics of the human segmentation clock, a 3D organoid system called “somitoid” supporting the simultaneous formation of somite-like structures, and another organoid system called “segmentoid” reconstituting in vivo–like hallmarks of somitogenesis. Together, these complementary model systems provide an excellent platform to decode somitogenesis and advance human developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubaud A, Pourquié O (2014) Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol 15:709–721

    Article  CAS  PubMed  Google Scholar 

  2. Eckalbar WL, Fisher RE, Rawls A, Kusumi K (2012) Scoliosis and segmentation defects of the vertebrae. Wiley Interdiscip Rev Dev Biol 1:401–423

    Article  CAS  PubMed  Google Scholar 

  3. Oates AC, Morelli LG, Ares S (2012) Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:625–639

    Article  CAS  PubMed  Google Scholar 

  4. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH (2020) Larsen’s human embryology E-book. Elsevier Health Sciences

    Google Scholar 

  5. Chu L-F, Mamott D, Ni Z, Bacher R, Liu C, Swanson S, Kendziorski C, Stewart R, Thomson JA (2019) An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep 28:2247–2255.e5

    Google Scholar 

  6. Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA, Donelly S, Michaut A, Al Tanoury Z, Yoshioka-Kobayashi K, Niino Y, Kageyama R, Miyawaki A, Touboul J, Pourquié O (2020) In vitro characterization of the human segmentation clock. Nature. https://doi.org/10.1038/s41586-019-1885-9

  7. Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK, Nagahashi A, Nishio M, Guo L, Ikegawa S, Sakurai S, Kihara S, Maurissen TL, Nakamura M, Matsumoto T, Yoshitomi H, Ikeya M, Kawakami N, Yamamoto T, Woltjen K, Ebisuya M, Toguchida J, Alev C (2020) Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580:124–129

    Article  CAS  PubMed  Google Scholar 

  8. Sanaki-Matsumiya M, Matsuda M, Gritti N, Nakaki F, Sharpe J, Trivedi V, Ebisuya M (2022) Periodic formation of epithelial somites from human pluripotent stem cells. Nat Commun 13:1–14

    Article  Google Scholar 

  9. Miao Y, Djeffal Y, De Simone A, Zhu K, Lee JG, Lu Z, Silberfeld A, Rao J, Tarazona OA, Mongera A, Rigoni P, Diaz-Cuadros M, Song LMS, Di Talia S, Pourquié O (2022) Reconstruction and deconstruction of human somitogenesis in vitro. Nature. https://doi.org/10.1038/s41586-022-05655-4

  10. Yamanaka Y, Hamidi S, Yoshioka-Kobayashi K, Munira S, Sunadome K, Zhang Y, Kurokawa Y, Ericsson R, Mieda A, Thompson JL, Kerwin J, Lisgo S, Yamamoto T, Moris N, Martinez-Arias A, Tsujimura T, Alev C (2022) Reconstituting human somitogenesis in vitro. Nature. https://doi.org/10.1038/s41586-022-05649-2

  11. Yaman YI, Ramanathan S (2023) Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 186:513–527.e19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miao, Y., Diaz-Cuadros, M., Pourquié, O. (2023). Modeling Human Paraxial Mesoderm Development with Pluripotent Stem Cells. In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2023_507

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_507

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics