Skip to main content

CRISPR/Cas-Mediated Knock-in of Genetically Encoded Fluorescent Biosensors into the AAVS1 Locus of Human-Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Abstract

Genetically encoded fluorescent biosensors (GEFBs) enable researchers to visualize and quantify cellular processes in live cells. Induced pluripotent stem cells (iPSCs) can be genetically engineered to express GEFBs via integration into the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus. This can be achieved using CRISPR/Cas ribonucleoprotein targeting to cause a double-strand break at the AAVS1 locus, which subsequently undergoes homology-directed repair (HDR) in the presence of a donor plasmid containing the GEFB sequence. We describe an optimized protocol for CRISPR/Cas-mediated knock-in of GEFBs into the AAVS1 locus of human iPSCs that allows puromycin selection and which exhibits negligible off-target editing. The resulting iPSC lines can be differentiated into cells of different lineages while retaining expression of the GEFB, enabling live-cell interrogation of cell pathway activities across a diversity of disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ooi L, Dottori M, Cook AL et al (2020) If human brain organoids are the answer to understanding dementia, what are the questions? Neuroscientist 26:438–454

    Article  Google Scholar 

  2. Scudellari M (2016) How iPS cells changed the world. Nature 534:310–312

    Article  Google Scholar 

  3. Rivetti di Val Cervo P, Besusso D, Conforti P, Cattaneo E (2021) hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 17(6):381–392. https://doi.org/10.1038/s41582-021-00465-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hernández D, Rooney LA, Daniszewski M et al (2021) Culture variabilities of human iPSC-derived cerebral organoids are a major issue for the modelling of phenotypes observed in Alzheimer’s disease. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-021-10147-5

  5. Karch CM, Hernández D, Wang J-C et al (2018) Human fibroblast and stem cell resource from the dominantly inherited Alzheimer network. Alzheimers Res Ther 10:69

    Article  CAS  Google Scholar 

  6. Konttinen H, Cabral-da-Silva MEC, Ohtonen S et al (2019) PSEN1ΔE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Reports 13:669–683

    Article  CAS  Google Scholar 

  7. Muñoz SS, Engel M, Balez R et al (2020) A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal forebrain-like cholinergic neurons for Alzheimer’s disease and frontotemporal dementia disease modeling. Cells 9:2018. https://doi.org/10.3390/cells9092018

    Article  PubMed Central  CAS  Google Scholar 

  8. Galloway CA, Dalvi S, Hung SSC et al (2017) Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A 114:E8214–E8223

    Article  CAS  Google Scholar 

  9. Singh R, Shen W, Kuai D et al (2013) iPS cell modeling of best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 22:593–607

    Article  CAS  Google Scholar 

  10. Tang C, Han J, Dalvi S et al (2021) A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 4:161

    Article  CAS  Google Scholar 

  11. Shirotani K, Matsuo K, Ohtsuki S et al (2017) A simplified and sensitive method to identify Alzheimer’s disease biomarker candidates using patient-derived induced pluripotent stem cells (iPSCs). J Biochem 162:391–394

    Article  CAS  Google Scholar 

  12. Kim BW, Ryu J, Jeong YE et al (2020) Human motor neurons with SOD1-G93A mutation generated from CRISPR/Cas9 gene-edited iPSCs develop pathological features of amyotrophic lateral sclerosis. Front Cell Neurosci 14:604171

    Article  CAS  Google Scholar 

  13. Chen J-R, Tang Z-H, Zheng J et al (2016) Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ 23:1347–1357

    Article  CAS  Google Scholar 

  14. Navarro-Guerrero E, Tay C, Whalley JP et al (2021) Genome-wide CRISPR/Cas9-knockout in human induced pluripotent stem cell (iPSC)-derived macrophages. Sci Rep 11:4245

    Article  CAS  Google Scholar 

  15. Zhu H, Blum R, Wu Z et al (2018) Notch activation rescues exhaustion in CISH-deleted human iPSC-derived natural killer cells to promote in vivo persistence and enhance anti-tumor activity. Blood 132:1279–1279

    Article  Google Scholar 

  16. Oceguera-Yanez F, Kim S-I, Matsumoto T et al (2016) Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 101:43–55

    Article  CAS  Google Scholar 

  17. Merling RK, Sweeney CL, Chu J et al (2015) An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 23:147–157

    Article  CAS  Google Scholar 

  18. Sun Y-H, Kao HKJ, Chang C-W et al (2020) Human induced pluripotent stem cell line with genetically encoded fluorescent voltage indicator generated via CRISPR for action potential assessment post-cardiogenesis. Stem Cells 38:90–101

    Article  CAS  Google Scholar 

  19. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614–3666

    Article  CAS  Google Scholar 

  20. Greenwald EC, Mehta S, Zhang J (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev 118:11707–11794

    Article  CAS  Google Scholar 

  21. Lee HN, Mehta S, Zhang J (2020) Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Curr Opin Cell Biol 63:114–124

    Article  CAS  Google Scholar 

  22. Burgstaller S, Bischof H, Gensch T et al (2019) pH-lemon, a fluorescent protein-based pH reporter for acidic compartments. ACS Sens 4:883–891

    Article  CAS  Google Scholar 

  23. Newman RH, Zhang J (2008) Visualization of phosphatase activity in living cells with a FRET-based calcineurin activity sensor. Mol BioSyst 4:496–501

    Article  CAS  Google Scholar 

  24. Mank M, Reiff DF, Heim N et al (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  CAS  Google Scholar 

  25. Shen Y, Wu S-Y, Rancic V et al (2019) Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol 2:18

    Article  CAS  Google Scholar 

  26. Marvin JS, Shimoda Y, Magloire V et al (2019) A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 16:763–770

    Article  CAS  Google Scholar 

  27. Dürst CD, Wiegert JS, Helassa N et al (2019) High-speed imaging of glutamate release with genetically encoded sensors. Nat Protoc 14:1401–1424

    Article  CAS  Google Scholar 

  28. Shcherbakova DM, Hink MA, Joosen L et al (2012) An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging. J Am Chem Soc 134:7913–7923

    Article  CAS  Google Scholar 

  29. Kaizuka T, Morishita H, Hama Y et al (2016) An autophagic flux probe that releases an internal control. Mol Cell 64:835–849

    Article  CAS  Google Scholar 

  30. Wang Q, Chear S, Wing K et al (2021) Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells. Methods. https://doi.org/10.1016/j.ymeth.2021.02.009

  31. Laker RC, Xu P, Ryall KA et al (2014) A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 289:12005–12015

    Article  CAS  Google Scholar 

  32. Goedhart J, von Stetten D, Noirclerc-Savoye M et al (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751

    Article  CAS  Google Scholar 

  33. Bax M, McKenna J, Do-Ha D et al (2019) The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation. Cell 8:581. https://doi.org/10.3390/cells8060581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Merridew Foundation and the Batten Disease Support and Research Association (Australia). pMitoTimer was a gift from Zhen Yan (Addgene plasmid # 52659; http://n2t.net/addgene:52659; RRID:Addgene_52659). pmTurquoise2-Tubulin was a gift from Dorus Gadella (Addgene plasmid # 36202; http://n2t.net/addgene:36202; RRID:Addgene_36202). pMRX-IP-GFP-LC3-RFP-LC3ΔG was a gift from Noboru Mizushima (Addgene plasmid # 84572; http://n2t.net/addgene:84572; RRID:Addgene_84572). Figures created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Stellon or Anthony L. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stellon, D. et al. (2021). CRISPR/Cas-Mediated Knock-in of Genetically Encoded Fluorescent Biosensors into the AAVS1 Locus of Human-Induced Pluripotent Stem Cells. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_422

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_422

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics