Skip to main content

Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies

  • Protocol
  • First Online:
Stem Cells and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

The maintenance of adult stem cells in their normal quiescent state depends on intrinsic factors and extrinsic signals originating from their microenvironment (also known as the stem cell niche). In skeletal muscle, its stem cells (satellite cells) lose their regenerative potential with aging, and this has been attributed, at least in part, to both age-associated changes in the satellite cells as in the niche cells, which include resident fibro-adipogenic progenitors (FAPs), macrophages, and endothelial cells, among others. To understand the regenerative decline of skeletal muscle with aging, there is a need for methods to specifically isolate stem and niche cells from resting muscle. Here we describe a fluorescence-activated cell sorting (FACS) protocol to simultaneously isolate discrete populations of satellite cells and niche cells from skeletal muscle of aging mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sousa-Victor P, Garcia-Prat L, Serrano AL, Perdiguero E, Munoz-Canoves P (2015) Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 26(6):287–296. https://doi.org/10.1016/j.tem.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  2. Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF (2018) The muscle stem cell niche in health and disease. Curr Top Dev Biol 126:23–65. https://doi.org/10.1016/bs.ctdb.2017.08.003

    Article  PubMed  Google Scholar 

  3. Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardi M, Ballestar E, Gonzalez S, Serrano AL, Perdiguero E, Munoz-Canoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–321. https://doi.org/10.1038/nature13013

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Munoz-Canoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42. https://doi.org/10.1038/nature16187

    Article  CAS  PubMed  Google Scholar 

  6. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. https://doi.org/10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. https://doi.org/10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  8. Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958. https://doi.org/10.1038/nature03572

    Article  CAS  PubMed  Google Scholar 

  9. Cornelison D, Perdiguero E (2017) Muscle stem cells: a model system for adult stem cell biology. Methods Mol Biol 1556:3–19. https://doi.org/10.1007/978-1-4939-6771-1_1

    Article  CAS  PubMed  Google Scholar 

  10. Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58(11):941–955. https://doi.org/10.1369/jhc.2010.956201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19. https://doi.org/10.1172/JCI40373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tedesco FS, Moyle LA, Perdiguero E (2017) Muscle interstitial cells: a brief field guide to non-satellite cell populations in skeletal muscle. Methods Mol Biol 1556:129–147. https://doi.org/10.1007/978-1-4939-6771-1_7

    Article  CAS  PubMed  Google Scholar 

  13. Tidball JG (2017) Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 17(3):165–178. https://doi.org/10.1038/nri.2016.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, Ben-Larbi S, Abou-Khalil R, Verger N, Bardot P, Magnan M, Chretien F, Mounier R, Germain S, Chazaud B (2017) Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Reports 9(6):2018–2033. https://doi.org/10.1016/j.stemcr.2017.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794. https://doi.org/10.1038/nm.3869

    Article  CAS  PubMed  Google Scholar 

  16. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44(2):355–367. https://doi.org/10.1016/j.immuni.2016.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panduro M, Benoist C, Mathis D (2018) Treg cells limit IFN-gamma production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proceedings of the National Academy of Sciences of the United States of America 115(11):E2585–E2593. https://doi.org/10.1073/pnas.1800618115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810. https://doi.org/10.1126/science.1144090

    Article  CAS  PubMed  Google Scholar 

  19. Huang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT, Lyu PC, Wu CL, Lu YC, Lin ST, Lin CW, Lai CH, Chang HT, Chou HC, Chan HL (2010) Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci 17:36. https://doi.org/10.1186/1423-0127-17-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gayraud-Morel B, Pala F, Sakai H, Tajbakhsh S (2017) Isolation of muscle stem cells from mouse skeletal muscle. Methods Mol Biol 1556:23–39. https://doi.org/10.1007/978-1-4939-6771-1_2

    Article  CAS  PubMed  Google Scholar 

  21. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067. https://doi.org/10.1126/science.1114758

    Article  CAS  PubMed  Google Scholar 

  22. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360. https://doi.org/10.1038/nature11438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482(7386):524–528. https://doi.org/10.1038/nature10834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296(2):245–255. https://doi.org/10.1016/j.yexcr.2004.02.018

    Article  CAS  PubMed  Google Scholar 

  25. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554. https://doi.org/10.1016/j.cell.2004.10.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by the Spanish Ministry of Science, Innovation and Universities, Spain (grant SAF2015-67369-R; and SAF 2015-70270-REDT, a María de Maeztu Unit of Excellence award to UPF [MDM-2014-0370], and a Severo Ochoa Center of Excellence award to the CNIC [SEV-2015-0505]), the UPF-CNIC collaboration agreement, ERC-2016-AdG-741966, La Caixa-HEALTH, AFM, MDA, and H2020-UPGRADE. V.M is recipient of a FPI predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eusebio Perdiguero or Pura Muñoz-Cánoves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Perdiguero, E., Moiseeva, V., Muñoz-Cánoves, P. (2019). Simultaneous Isolation of Stem and Niche Cells of Skeletal Muscle: Applicability for Aging Studies. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2019_210

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_210

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics