Skip to main content

Isolation of Muscle Stem Cells from Mouse Skeletal Muscle

  • Protocol
  • First Online:
Muscle Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1556))

Abstract

Isolation of muscle stem cells from skeletal muscle is a critical step for the study of skeletal myogenesis and regeneration. Although stem cell isolation has been performed for decades, the emergence of flow cytometry with defined cell surface markers, or transgenic mouse models, has allowed the efficient isolation of highly enriched stem cell populations. Here, we describe the isolation of mouse muscle stem cells using two different combinations of enzyme treatments allowing the release of mononucleated muscle stem cells from their niche. Mouse muscle stem cells can be further isolated as a highly enriched population by flow cytometry using fluorescent reporters or cell surface markers. We will present advantages and drawbacks of these different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

FACS:

Fluorescent-activated cell sorting

TA:

Tibialis anterior

GFP:

Green fluorescent protein

FSC:

Forward scatter

SSC:

Side scatter

C/T:

Collagenase D/Trypsin

C/D:

Collagenase A/Dispase II

FBS:

Fetal bovine serum

CD:

Cluster of differentiation

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi:10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  3. Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: still young and fascinating at 50. J Histochem Cytochem 59(12):1041–1059. doi:10.1369/0022155411426780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459. doi:2007-0019 [pii]5.1634/stemcells.2007-0019

    Google Scholar 

  5. Kuang S, Rudnicki MA (2008) The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 14(2):82–91

    Google Scholar 

  6. Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1. doi:10.3389/fcell.2014.00001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rocheteau P, Vinet M, Chretien F (2015) Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 56:215–235. doi:10.1007/978-3-662-44608-9_10

    Article  CAS  PubMed  Google Scholar 

  8. Sambasivan R, Tajbakhsh S (2015) Adult skeletal muscle stem cells. Results Probl Cell Differ 56:191–213. doi:10.1007/978-3-662-44608-9_9

    Article  CAS  PubMed  Google Scholar 

  9. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786

    Article  CAS  PubMed  Google Scholar 

  10. Sambasivan R, Comai G, Le Roux I, Gomes D, Konge J, Dumas G, Cimper C, Tajbakhsh S (2013) Embryonic of adult muscle stem cells are primed by the determination gene Mrf4. Dev Biol 381(1):241–255. doi:10.1016/j.ydbio.2013.04.018

    Article  CAS  PubMed  Google Scholar 

  11. Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16(6):810–821

    Article  CAS  PubMed  Google Scholar 

  12. Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RC, Kyba M (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26(12):3194–3204

    Article  CAS  PubMed  Google Scholar 

  13. Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13(5):590–601. doi:10.1016/j.stem.2013.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lepper C, Fan CM (2010) Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48(7):424–436. doi:10.1002/dvg.20630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30(2):243–252. doi:10.1002/stem.775

    Article  CAS  PubMed  Google Scholar 

  16. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. doi:10.1242/dev.064162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435(7044):948–953

    Article  CAS  PubMed  Google Scholar 

  18. Gayraud-Morel B, Chretien F, Jory A, Sambasivan R, Negroni E, Flamant P, Soubigou G, Coppee JY, Di Santo J, Cumano A, Mouly V, Tajbakhsh S (2012) Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J Cell Sci 125(Pt 7):1738–1749. doi:10.1242/jcs.097006

    Article  CAS  PubMed  Google Scholar 

  19. Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S (2014) Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Dev Cell 31(5):654–667. doi:10.1016/j.devcel.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Haldar M, Hancock JD, Coffin CM, Lessnick SL, Capecchi MR (2007) A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11(4):375–388. doi:10.1016/j.ccr.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  21. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tallquist MD, Weismann KE, Hellstrom M, Soriano P (2000) Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127(23):5059–5070

    Article  CAS  PubMed  Google Scholar 

  23. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304(1):246–259. doi:10.1016/j.ydbio.2006.12.026

    Article  CAS  PubMed  Google Scholar 

  24. Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z (2013) Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol 946:431–468. doi:10.1007/978-1-62703-128-8_28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shinin V, Gayraud-Morel B, Tajbakhsh S (2009) Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells. Methods Mol Biol 482:295–317. doi:10.1007/978-1-59745-060-7_19

    Article  CAS  PubMed  Google Scholar 

  26. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(1–2):112–125. doi:10.1016/j.cell.2011.11.049

    Article  CAS  PubMed  Google Scholar 

  27. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456(7221):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  CAS  PubMed  Google Scholar 

  29. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490(7420):355–360. doi:10.1038/nature11438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482(7386):524–528. doi:10.1038/nature10834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296(2):245–255. doi:10.1016/j.yexcr.2004.02.018

    Article  CAS  PubMed  Google Scholar 

  32. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4(3):217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510(7505):393–396. doi:10.1038/nature13255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Motohashi N, Asakura Y, Asakura A (2014) Isolation, culture, and transplantation of muscle satellite cells. J Vis Exp (86). doi:10.3791/50846

  36. Pisani DF, Dechesne CA, Sacconi S, Delplace S, Belmonte N, Cochet O, Clement N, Wdziekonski B, Villageois AP, Butori C, Bagnis C, Di Santo JP, Kurzenne JY, Desnuelle C, Dani C (2010) Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells 28(4):753–764. doi:10.1002/stem.317

    Article  CAS  PubMed  Google Scholar 

  37. Marg A, Escobar H, Gloy S, Kufeld M, Zacher J, Spuler A, Birchmeier C, Izsvak Z, Spuler S (2014) Human satellite cells have regenerative capacity and are genetically manipulable. J Clin Invest 124(10):4257–4265. doi:10.1172/JCI63992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN (2014) Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 9(2):e90398. doi:10.1371/journal.pone.0090398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castiglioni A, Hettmer S, Lynes MD, Rao TN, Tchessalova D, Sinha I, Lee BT, Tseng YH, Wagers AJ (2014) Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports 2(1):92–106. doi:10.1016/j.stemcr.2013.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamaki T, Uchiyama Y, Hirata M, Hashimoto H, Nakajima N, Saito K, Terachi T, Mochida J (2015) Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol 6:165. doi:10.3389/fphys.2015.00165

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266

    Article  CAS  PubMed  Google Scholar 

  42. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656

    Article  CAS  PubMed  Google Scholar 

  43. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. doi:10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support from the Institut Pasteur, Centre National pour la Recherche Scientifique, Association Française contre les Myopathies, Agence Nationale de la Recherche (Laboratoire d’Excellence Revive, Investissement d’Avenir; ANR-10-LABX-73), Association pour la Recherche sur le Cancer, EU Advanced ERC grant, and Fondation pour la Recherche Médicale. H. Sakai is funded by the ERC and F. Pala by the LabEx Revive/Pasteur PPU program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Gayraud-Morel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gayraud-Morel, B., Pala, F., Sakai, H., Tajbakhsh, S. (2017). Isolation of Muscle Stem Cells from Mouse Skeletal Muscle. In: Perdiguero, E., Cornelison, D. (eds) Muscle Stem Cells. Methods in Molecular Biology, vol 1556. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6771-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6771-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6769-8

  • Online ISBN: 978-1-4939-6771-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics