Skip to main content

Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1357))

Abstract

Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient’s own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.

Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204

    Article  PubMed  CAS  Google Scholar 

  2. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi K et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  5. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi K, Yamanaka S (2013) Induced pluripotent stem cells in medicine and biology. Development 140(12):2457–2461

    Article  PubMed  CAS  Google Scholar 

  8. Inoue H et al (2014) iPS cells: a game changer for future medicine. EMBO J 33(5):409–417

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22(15):1987–1997

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Park IH et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    Article  PubMed  CAS  Google Scholar 

  12. Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Hargus G et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107(36):15921–15926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lee G et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Raya A et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ludwig T, Thomson A (2007) Defined, feeder-independent medium for human embryonic stem cell culture. Curr Protoc Stem Cell Biol Chapter 1:Unit 1C 2

    PubMed  Google Scholar 

  17. Nakagawa M et al (2014) A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep 4:3594

    PubMed  PubMed Central  Google Scholar 

  18. Takahashi K et al (2009) Human induced pluripotent stem cells on autologous feeders. PLoS One 4(12):e8067

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen G et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Awaya T et al (2012) Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One 7(12):e51638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Barberi T et al (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13(5):642–648

    Article  PubMed  CAS  Google Scholar 

  22. Borchin B, Chen J, Barberi T (2013) Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Rep 1(6):620–631

    Article  CAS  Google Scholar 

  23. Tedesco FS et al (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra89

    PubMed  Google Scholar 

  24. Xu C et al (2013) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155(4):909–921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zheng JK et al (2006) Skeletal myogenesis by human embryonic stem cells. Cell Res 16(8):713–722

    Article  PubMed  CAS  Google Scholar 

  26. Goudenege S et al (2012) Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 20(11):2153–2167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Darabi R et al (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Darabi R et al (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14:134–143

    Article  PubMed  CAS  Google Scholar 

  29. Darabi R et al (2011) Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors. Stem Cells 29:777–790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Filareto A, Darabi R, Perlingeiro RCR (2012) Engraftment of ES-derived myogenic progenitors in a severe mouse model of muscular dystrophy. J Stem Cell Res Ther 220:212–216

    Google Scholar 

  31. Darabi R et al (2011) Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev Rep 7:948–957

    Article  Google Scholar 

  32. Filareto A et al (2013) An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4(1549):1–17

    Google Scholar 

  33. Skoglund G et al (2014) Physiological and ultrastructural features of human induced pluripotent and embryonic stem cell-derived skeletal myocytes in vitro. Proc Natl Acad Sci U S A 111(22):8275–8280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. R. Perlingeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Darabi, R., Perlingeiro, R.C.R. (2014). Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7. In: Turksen, K., Nagy, A. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 1357. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_134

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_134

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3054-8

  • Online ISBN: 978-1-4939-3055-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics