Protein Structure Modeling with MODELLER

  • Narayanan Eswar
  • David Eramian
  • Ben Webb
  • Min-Yi Shen
  • Andrej Sali
Part of the Methods in Molecular Biology™ book series (MIMB, volume 426)

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protcols has resulted in models of useful accuracy for domains in more than half of all known protein sequences.


Protein Data Bank Consensus Model Protein Data Bank Code Multiple Template Multiple Structure Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, D., and Sali, A. (2001) Protein structure prediction and structural genomics. Science 294, 93–96.CrossRefPubMedGoogle Scholar
  2. 2.
    Pieper, U., Eswar, N., Davis, F. P., Braberg, H., Madhusudhan, M. S., Rossi, A., Marti-Renom, M., Karchin, R., Webb, B. M., Eramian, D., Shen, M. Y., Kelly, L., Melo, F., and Sali, A. (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 34, D291–295.CrossRefPubMedGoogle Scholar
  3. 3.
    Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325.CrossRefPubMedGoogle Scholar
  4. 4.
    Fiser, A., Do, R. K., and Sali, A. (2000) Modeling of loops in protein structures. Protein Sci. 9, 1753–1773.CrossRefPubMedGoogle Scholar
  5. 5.
    Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.CrossRefPubMedGoogle Scholar
  6. 6.
    Eswar, N., Madhusudhan, M.S., Marti-Renom, M.A., Sali, A. (2005) BUILD_ PROFILE: a module for calculating sequence profiles in MODELLER.
  7. 7.
    Marti-Renom, M. A., Madhusudhan, M. S., and Sali, A. (2004) Alignment of protein sequences by their profiles. Prot. Sci. 13, 1071–1087.CrossRefGoogle Scholar
  8. 8.
    Eswar, N., Madhusudhan, M.S., Marti-Renom, M.A., Sali, A. (2005) PROFILE_ SCAN: A module for fold-assignment using profile-profile scanning in MODELLER.
  9. 9.
    Madhusudhan, M. S., Marti-Renom, M. A., Sanchez, R., and Sali, A. (2006) Variable gap penalty for protein sequence-structure alignment. Protein Eng. Des. Sel. 19, 129–133.CrossRefPubMedGoogle Scholar
  10. 10.
    MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack, R. L., Jr., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Muczera, K., Lau, F. T. K., Mattos, C., Michnik, S., Nguyen, D. T., Ngo, T., Prodhom, B., reiher, W. E., III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential for molecular modleing and dynamics studies of proteins. J.Phys.Chem.B. 102, 3586–3616.CrossRefGoogle Scholar
  11. 11.
    Sali, A., and Overington, J. P. (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3, 1582–1596.CrossRefPubMedGoogle Scholar
  12. 12.
    Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu, G., Fiser, A., ter Kuile, B., Sali, A., and Muller, M. (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. USA 96, 6285–6290.CrossRefPubMedGoogle Scholar
  14. 14.
    Deshpande, N., Addess, K. J., Bluhm, W. F., Merino-Ott, J. C., Townsend-Merino, W., Zhang, Q., Knezevich, C., Xie, L., Chen, L., Feng, Z., Green, R. K., Flippen-Anderson, J. L., Westbrook, J., Berman, H. M., and Bourne, P. E. (2005) The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33, D233–237.CrossRefPubMedGoogle Scholar
  15. 15.
    Smith, T. F., and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.CrossRefPubMedGoogle Scholar
  16. 16.
    Needleman, S. B., and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.CrossRefPubMedGoogle Scholar
  17. 17.
    Madhusudhan, M. S., Eswar, N., Marti-Renom, M.A., Sali, A. (2005) SALIGN: A module for multiple sequence/structure alignments in MODELLER.
  18. 18.
    John, B., and Sali, A. (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 31, 3982–3992.CrossRefPubMedGoogle Scholar
  19. 19.
    Melo, F., Sanchez, R., and Sali, A. (2002) Statistical potentials for fold assessment. Protein Sci. 11, 430–448.CrossRefPubMedGoogle Scholar
  20. 20.
    Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94.CrossRefPubMedGoogle Scholar
  21. 21.
    May, A. C. (2004) Percent sequence identity; the need to be explicit. Structure 12, 737–738.CrossRefPubMedGoogle Scholar
  22. 22.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.CrossRefPubMedGoogle Scholar
  23. 23.
    Pearson, W. R. (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Henikoff, S., and Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhou, H., and Zhou, Y. (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58, 321–328.CrossRefPubMedGoogle Scholar
  26. 26.
    McGuffin, L. J., and Jones, D. T. (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881.CrossRefPubMedGoogle Scholar
  27. 27.
    Karchin, R., Cline, M., Mandel-Gutfreund, Y., and Karplus, K. (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51, 504–514.CrossRefPubMedGoogle Scholar
  28. 28.
    Shi, J., Blundell, T. L., and Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257.CrossRefPubMedGoogle Scholar
  29. 29.
    Dunbrack, R. L., Jr. (2006) Sequence comparison and protein structure prediction. Curr. Opin. Struct. Biol. 16, 374–384.CrossRefPubMedGoogle Scholar
  30. 30.
    Xiang, Z. (2006) Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227.CrossRefPubMedGoogle Scholar
  31. 31.
    Sanchez, R., and Sali, A. (1997) Advances in comparative protein-structure modelling. Curr. Opin. Struct. Biol. 7, 206–214.CrossRefPubMedGoogle Scholar
  32. 32.
    Eramian, D., Shen, M. Y., Devos, D., Melo, F., Sali, A., and Marti-Renom, M. A. (2006) A composite score for predicting errors in protein structure models. Protein Sci. 15, 1653–1666.CrossRefPubMedGoogle Scholar
  33. 33.
    Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., and Friesner, R. A. (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367.CrossRefPubMedGoogle Scholar
  34. 34.
    Fernandez-Fuentes, N., Oliva, B., and Fiser, A. (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res. 34, 2085–2097.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhu, K., Pincus, D. L., Zhao, S., and Friesner, R. A. (2006) Long loop prediction using the protein local optimization program. Proteins 65, 438–452.CrossRefPubMedGoogle Scholar
  36. 36.
    Coutsias, E. A., Seok, C., Jacobson, M. P., and Dill, K. A. (2004) A kinematic view of loop closure. J. Comput. Chem. 25, 510–528.CrossRefPubMedGoogle Scholar
  37. 37.
    van Vlijmen, H. W., and Karplus, M. (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J. Mol. Biol. 267, 975–1001.CrossRefPubMedGoogle Scholar
  38. 38.
    Sanchez, R., Sali, A. (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins 1, 50–58.CrossRefPubMedGoogle Scholar
  39. 39.
    Srinivasan, N., and Blundell, T. L. (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 6, 501–512.CrossRefPubMedGoogle Scholar
  40. 40.
    Sanchez, R., Sali, A. (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597–13602.CrossRefPubMedGoogle Scholar
  41. 41.
    Chothia, C., and Lesk, A. M. (1986) The relation between the divergence of sequence and structure in proteins. Embo. J. 5, 823–826.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Narayanan Eswar
    • 1
  • David Eramian
    • 1
  • Ben Webb
    • 1
  • Min-Yi Shen
    • 1
  • Andrej Sali
    • 1
  1. 1.Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry and California Institute for Quantitative Biomedical ResearchUniversity of California at San FranciscoSan FranciscoCalifornia

Personalised recommendations