Skip to main content

Exploring RNA Virus Replication in Xenopus Oocytes

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

Microinjection of poliovirus RNA in Xenopus oocytes initiates a complete and authentic viral replication cycle that yields newly synthesized infectious virus. This system can be used to study the molecular mechanism of the different steps involved in virus replication. Interestingly, viral replication only occurs if poliovirus RNA is coinjected with factors present in HeLa extracts. We have determined that two HeLa cell factors are required for viral replication in oocytes, one involved in initiation of translation (polio translation factor) and the other in RNA synthesis. Thus, microinjection in oocytes provides a strategy to identify and further analyze the function of these host cell factors and to biochemically dissect the mechanism of initiation of poliovirus translation and RNA synthesis. Here, we review protocols, approaches, and potential issues that can be addressed using the oocyte system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gamarnik, A. V. and Andino, R. (1996) Replication of poliovirus in Xenopus oocytes requires two human factors. EMBO J. 15, 5988–5998.

    CAS  PubMed  Google Scholar 

  2. Gamarnik, A. V. and Andino, R. (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3, 882–892.

    CAS  PubMed  Google Scholar 

  3. Gamarnik, A. V. and Andino, R. (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12, 2293–1304.

    Article  CAS  PubMed  Google Scholar 

  4. Gamarnik, A. V., Boddeker, N., and Andino, R. (2000) Translation and replication of human rhinovirus type 14 and mengovirus in Xenopus oocytes. J. Virol. 74,11,983–11987.

    Article  CAS  PubMed  Google Scholar 

  5. Baltimore, D. (1984) Molecular genetics of poliovirus. Rev. Infect. Dis. 6(Suppl. 2), 484–486.

    Google Scholar 

  6. Johnson, K. A. and Sarnow, P. (1995) Viral RNA synthesis, in Human Enterovirus Infections (Rotbart, H., ed.), 1ASM, Washington, DC, pp. 95–112.

    Google Scholar 

  7. Gale, M., Jr., Tan, S. L., and Katze, M. G. (2000) Translational control of viral gene expression in eukaryotes. Microbiol. Mol. Biol. Rev. 64, 239–280.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C. Y. and Sarnow, P. (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417.

    Article  CAS  PubMed  Google Scholar 

  9. Trono, D., Pelletier J., Sonenberg N., Baltimore D. (1988) Translation in mammalian cells of a gene linked to the poliovirus 5′ noncoding region. Science 241, 445–448.

    Article  CAS  PubMed  Google Scholar 

  10. Andino, R., Boddeker, N., Silvera D., Gamarnik, A. V. (1999) Intracellular determinants of picornavirus replication. Trends Microbiol. 7, 76–82.

    Article  CAS  PubMed  Google Scholar 

  11. Gromeier, M., Alexander, L., and Wimmer, E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93, 2370–2375.

    Google Scholar 

  12. Kauder, S. E. and Racaniello, V. R. (2004) Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Invest. 113, 1743–1753.

    CAS  PubMed  Google Scholar 

  13. Pilipenko, E. V., Pestova, T. V., Kolupaeva. V. G., et al. (2000) A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 14, 2028–2045.

    CAS  PubMed  Google Scholar 

  14. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  CAS  PubMed  Google Scholar 

  15. Silvera, D., Gamarnik, A. V., and Andino, R. (1999) The N-terminal K homology domain of the poly(rC)-binding protein is a major determinant for binding to the poliovirus 5′-untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem. 274, 38,163–38,170.

    Article  CAS  PubMed  Google Scholar 

  16. Herold, J. and Andino, R. (2000) Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J. Virol. 74, 6394–6400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Gamarnik, A.V., Andino, R. (2006). Exploring RNA Virus Replication in Xenopus Oocytes. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics