Nuclear Pore Complex Structure and Plasticity Revealed by Electron and Atomic Force Microscopy

  • Bohumil Maco
  • Birthe Fahrenkrog
  • Ning-Ping Huang
  • Ueli Aebi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 322)

Abstract

To study the ultrastructure of nuclear pore complexes (NPCs), a wide spectrum of different electron microscopy (EM) or atomic force microscopy (AFM) techniques can be employed. The combination of these methods can reveal new insights into the structural and functional organization of this important supramolecular machine through which nucleocytoplasmic transport occurs. Negative staining, quick freezing/freeze-drying/rotary metal shadowing, embedding and thin sectioning, cryoelectron microscopy and tomography, scanning electron microscopy, or combination with immunolabeling techniques are tools for collecting data and information about the three-dimensional structure and architecture of the NPCs. AFM enables investigation of the functional dynamics of native NPCs under physiological conditions.

Key Words

Atomic force microscopy electron microscopy nuclear pore complex nucleus Xenopus laevis 

References

  1. 1.
    Unwin, P. N. and Milligan, R. A. (1982) A large particle associated with the perimeter of the nuclear pore complex. J. Cell Biol. 93, 63–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Hinshaw, J. E., Carragher, B. O., and Milligan, R. A. (1992) Architecture and design of the nuclear pore complex. Cell 69, 1133–1141.CrossRefPubMedGoogle Scholar
  3. 3.
    Akey, C. W. and Radermacher, M. (1993) Architecture of the Xenopus nuclear pore complex revealed by 3-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19.CrossRefPubMedGoogle Scholar
  4. 4.
    Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D., and Aebi, U. (2003) Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130.CrossRefPubMedGoogle Scholar
  5. 5.
    Reichelt, R., Holzenburg, A., Buhle, E. L., Jr., Jarnik, M., Engel, A., and Aebi, U. (1990) Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883–894.CrossRefPubMedGoogle Scholar
  6. 6.
    Fahrenkrog, B., Köser, J., and Aebi, U. (2004) The nuclear pore complex: a jack of all trades? Trends Cell Biol 29, 175–182.Google Scholar
  7. 7.
    Fahrenkrog, B. and Aebi, U. (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell Biol. 4, 757–766.PubMedGoogle Scholar
  8. 8.
    Jarnik, M. and Aebi, U. (1991) Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107, 291–308.CrossRefPubMedGoogle Scholar
  9. 9.
    Hinshaw, J. E. and Milligan, R. A. (2003) Nuclear pore complexes exceeding eightfold rotational symmetry. J. Struct. Biol. 141, 259–268.CrossRefPubMedGoogle Scholar
  10. 10.
    Harris, J. R., ed. (1997) Negative Staining and Cryoelectron Microscopy: The Thin Film Techniques, BIOS Scientific Publishers Limited, Oxford, UK.Google Scholar
  11. 11.
    Goldberg, M. W. and Allen, T. D. (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119, 1429–1440.CrossRefPubMedGoogle Scholar
  12. 12.
    Goldberg, M. W. and Allen, T. D. (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J. Cell Sci. 106, 261–274.PubMedGoogle Scholar
  13. 13.
    Goldberg, M. W., Wiese, C, Allen, T. D., and Wilson, K. L. (1997) Dimples, pores, starrings, and thin rings on growing nuclear envelopes: evidence for structural intermediates in nuclear pore complex assembly. J. Cell Sci. 110, 409–420.PubMedGoogle Scholar
  14. 14.
    Panté, N., Bastos, R., McMorrow, I., Burke, B., and Aebi, U. (1994) Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol. 126,603–617.CrossRefPubMedGoogle Scholar
  15. 15.
    Fahrenkrog, B., Maco, B., Fager, A. M., Köser, J., Sauder, U., Ullman, K.S., and Aebi, U. (2002) Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267.CrossRefPubMedGoogle Scholar
  16. 16.
    Slot, J. W. and Geuze, H. J. (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38, 87–93.PubMedGoogle Scholar
  17. 17.
    Baschong, W. and Wrigley, N. G. (1990) Small colloidal gold conjugated to Fab fragments or to immunoglobulin G as high-resolution labels for electron microscopy: a technical overview. J. Electron Microsc. Tech. 14, 313–323.CrossRefPubMedGoogle Scholar
  18. 18.
    Stoffler, D., Goldie, K. N., Feja, B., and Aebi, U. (1999) Calcium-mediated structural changes of native nuclear pore complexes monitored by time-lapse atomic force microscopy. J. Mol. Biol. 287, 741–752.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Bohumil Maco
    • 1
  • Birthe Fahrenkrog
    • 1
  • Ning-Ping Huang
    • 1
  • Ueli Aebi
    • 1
  1. 1.M. E. Müller Institute for Structural Biology, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations