Skip to main content

Automated Macro Approach to Quantify Synapse Density in 2D Confocal Images from Fixed Immunolabeled Neural Tissue Sections

  • Protocol
  • First Online:
Computer Optimized Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2040))

Abstract

This chapter describes an ImageJ/Fiji automated macro approach to estimate synapse densities in 2D fluorescence confocal microscopy images. The main step-by-step imaging workflow is explained, including example macro language scripts that perform all steps automatically for multiple images. Such tool provides a straightforward method for exploratory synapse screenings where hundreds to thousands of images need to be analyzed in order to render significant statistical information. The method can be adapted to any particular set of images where fixed brain slices have been immunolabeled against validated presynaptic and postsynaptic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4(5):a005587. https://doi.org/10.1101/cshperspect.a005587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rakic P, Bourgeois JP, Goldman-Rakic PS (1994) Synaptic development of the cerebral cortex: implications for learning, memory, and mental illness. Prog Brain Res 102:227–243. https://doi.org/10.1016/S0079-6123(08)60543-9

    Article  CAS  PubMed  Google Scholar 

  3. Henstridge CM, Pickett E, Spires-Jones TL (2016) Synaptic pathology: a shared mechanism in neurological disease. Ageing Res Rev 28:72–84. https://doi.org/10.1016/j.arr.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  4. Mata G, Heras J, Morales M, Romero A, Rubio J (2016) SynapCountJ: a tool for analyzing synaptic densities in neurons. Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2016) 2: BIOIMAGING. p 25–31

    Google Scholar 

  5. Fish K, Sweet R, Deo A, Lewis D (2008) An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Res 1240:62–72

    Article  CAS  Google Scholar 

  6. Danielson E, Lee SH (2014) SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons. PLoS One 9(12):e115298. https://doi.org/10.1371/journal.pone.0115298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mokin M, Keifer J (2006) Quantitative analysis of immunofluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157:218–224

    Article  CAS  Google Scholar 

  8. Hoon M, Sinha R, Okawa H (2017) Using fluorescent markers to estimate synaptic connectivity in situ. Methods Mol Biol 1538:293–320. https://doi.org/10.1007/978-1-4939-6688-2_20

    Article  CAS  PubMed  Google Scholar 

  9. Weiler NC, Collman F, Vogelstein JT, Burns R, Smith SJ (2014) Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography. Sci Data 1:140046. https://doi.org/10.1038/sdata.2014.46

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cordelières F, Bolte S (2014) Experimenters’ guide to colocalization studies: finding a way through indicators and quantifiers, in practice. Methods Cell Biol 123:395–408

    Article  Google Scholar 

  11. Dobie FA, Craig AM (2011) Inhibitory synapse dynamics: coordinated presynaptic and postsynaptic mobility and the major contribution of recycled vesicles to new synapse formation. J Neurosci 31(29):10481–10493. https://doi.org/10.1523/JNEUROSCI.6023-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueder C, Saalfeld S, Schmid B, Tinevez J, White D, Hartenschtein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  13. Dickstein D, Kabaso D, Rocher A, Luebke J, Wearne S, Hof P (2007) Changes in the structural complexity of the aged brain. Aging Cell 6(3):275–284

    Article  CAS  Google Scholar 

  14. Smal I, Loog M, Niessen W, Meijering E (2010) Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans Med Imaging 29(2):282–301. https://doi.org/10.1109/TMI.2009.2025127

    Article  PubMed  Google Scholar 

  15. Sassoe-Pognetto M, Panzanelli P, Sieghart W, Fritschy JM (2000) Colocalization of multiple GABA(A) receptor subtypes with gephyrin at postsynaptic sites. J Comp Neurol 420(4):481–498

    Article  CAS  Google Scholar 

  16. Arranz J, Balducci E, Arato K, Sanchez-Elexpuru G, Najas S, Parras A, Rebollo E, Pijuan I, Erb I, Verde G, Sahun I, Barallobre M, Lucas J, Sanchez M, de la Luna S, Arbones M (2019) Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiology 127:210–222

    CAS  Google Scholar 

  17. Github website MI, Synapse Counter. https://github.com/MolecularImagingPlatformIBMB/Synapse_Counter.git

  18. Schneider CA, Rasband WS, KW E (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  19. Fiji download website. https://imagej.net/Fiji/Downloads

  20. ImageJ macro functions website. https://imagej.nih.gov/ij/developer/macro/functions.html

  21. Li CH, Tam PKS (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recogn Lett 19(8):771–776

    Article  Google Scholar 

  22. Pawley J (2000) The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. BioTechniques 28(5):884–886. 888

    Article  CAS  Google Scholar 

  23. Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70(1):1–9. https://doi.org/10.1002/jemt.20396

    Article  CAS  PubMed  Google Scholar 

  24. ImageJ macro programming. https://imagej.nih.gov/ij/docs/guide/146-14.html

  25. formats Is. https://docs.openmicroscopy.org/bio-formats/5.7.3/supported-formats.html

  26. FeatureJ. http://imagescience.org/meijering/software/featurej/

  27. Roerdink J, Meijster A (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41:187–228

    Google Scholar 

  28. functions Iu-d. https://imagej.nih.gov/ij/developer/macro/macros.html#functions

  29. Sternberg S (1983) Biomedical image processing. Computer 16(1):22–34

    Article  Google Scholar 

  30. ImageJ’s subtract background. https://imagej.nih.gov/ij/developer/api/ij/plugin/filter/BackgroundSubtracter.html

  31. Singh I, Neeru N (2014) Performance comparison of various image denoising filters under spatial domain. Int J Comp Appl 96(19):21–30

    Google Scholar 

  32. Auto local threshold. https://imagej.net/Auto_Local_Threshold

Download references

Acknowledgments

We are grateful to Juan Arranz for immunofluorescence experiments and Manel Bosch for useful advice on macro programming. MLA provided samples and biological input. JBF contributed the chromatic shift calculation macro. ER performed the imaging, designed and programmed the macro analysis pipeline, and wrote the paper. Images were acquired at the Molecular Imaging Platform IBMB (CSIC) with the support from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund CSIC13-4E-2065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Rebollo .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Macros

(ZIP 4482 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rebollo, E., Boix-Fabrés, J., Arbones, M.L. (2019). Automated Macro Approach to Quantify Synapse Density in 2D Confocal Images from Fixed Immunolabeled Neural Tissue Sections. In: Rebollo, E., Bosch, M. (eds) Computer Optimized Microscopy. Methods in Molecular Biology, vol 2040. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9686-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9686-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9685-8

  • Online ISBN: 978-1-4939-9686-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics