Skip to main content

Using Fluorescent Markers to Estimate Synaptic Connectivity In Situ

  • Protocol
  • First Online:
Synapse Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1538))

Abstract

Labeling fixed brain tissue with fluorescent synaptic and cellular markers can help assess circuit connectivity. Despite the diffraction-limited resolution of light microscopy there are several approaches to identify synaptic contacts onto a cell-of-interest. Understanding which image quantification methods can be applied to estimate cellular and synaptic connectivity at the light microscope level is beneficial to answer a range of questions, from mapping appositions between cellular structures or synaptic proteins to assessing synaptic contact density onto a cell-of-interest. This chapter provides the reader with details of the image analysis methods that can be applied to quantify in situ connectivity patterns at the level of cellular contacts and synaptic appositions.

Correspondence may be addressed to either author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grimes WN, Hoon M, Briggman KL, Wong RO, Rieke F (2014) Cross-synaptic synchrony and transmission of signal and noise across the mouse retina. Elife 3:e03892

    Article  PubMed  PubMed Central  Google Scholar 

  2. Okawa H, Della Santina L, Schwartz GW, Rieke F, Wong RO (2014) Interplay of cell-autonomous and nonautonomous mechanisms tailors synaptic connectivity of converging axons in vivo. Neuron 82:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morgan JL, Soto F, Wong RO, Kerschensteiner D (2011) Development of cell type-specific connectivity patterns of converging excitatory axons in the retina. Neuron 71:1014–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan JL, Schubert T, Wong RO (2008) Developmental patterning of glutamatergic synapses onto retinal ganglion cells. Neural Dev 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bleckert A, Parker ED, Kang Y, Pancaroglu R, Soto F et al (2013) Spatial relationships between GABAergic and glutamatergic synapses on the dendrites of distinct types of mouse retinal ganglion cells across development. PLoS One 8:e69612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO (2009) Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature 460:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong RO (2013) Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. Neuron 78:124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newkirk GS, Hoon M, Wong RO, Detwiler PB (2013) Inhibitory inputs tune the light response properties of dopaminergic amacrine cells in mouse retina. J Neurophysiol 110:536–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunn FA, Della Santina L, Parker ED, Wong RO (2013) Sensory experience shapes the development of the visual system’s first synapse. Neuron 80:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soto F, Bleckert A, Lewis R, Kang Y, Kerschensteiner D et al (2011) Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development. Neural Dev 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morgan JL, Wong RO (2008) Ballistic labeling with fluorescent dyes and indicators. Curr Protoc Neurosci Chapter 2:Unit 2.11

    PubMed  Google Scholar 

  12. Swartz M, Eberhart J, Mastick GS, Krull CE (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21

    Article  CAS  PubMed  Google Scholar 

  13. Zucker RM, Rigby P, Clements I, Salmon W, Chua M (2007) Reliability of confocal microscopy spectral imaging systems: use of multispectral beads. Cytometry A 71:174–189

    Article  PubMed  Google Scholar 

  14. Scriven DR, Lynch RM, Moore ED (2008) Image acquisition for colocalization using optical microscopy. Am J Physiol Cell Physiol 294:C1119–1122

    Article  CAS  PubMed  Google Scholar 

  15. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Eghbali M, Ou J, Lu R, Toro L et al (2010) Quantitative determination of spatial protein-protein correlations in fluorescence confocal microscopy. Biophys J 98:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Comeau JW, Kolin DL, Wiseman PW (2008) Accurate measurements of protein interactions in cells via improved spatial image cross-correlation spectroscopy. Mol Biosyst 4:672–685

    Article  CAS  PubMed  Google Scholar 

  18. Hoon M, Bauer G, Fritschy JM, Moser T, Falkenburger BH et al (2009) Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci 29:8039–8050

    Article  CAS  PubMed  Google Scholar 

  19. Mokin M, Keifer J (2006) Quantitative analysis of immunofluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157:218–224

    Article  CAS  PubMed  Google Scholar 

  20. Mokin M, Keifer J (2004) Targeting of GLUR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning. Neuroscience 128:219–228

    Article  CAS  PubMed  Google Scholar 

  21. Fish KN, Sweet RA, Deo AJ, Lewis DA (2008) An automated segmentation methodology for quantifying immunoreactive puncta number and fluorescence intensity in tissue sections. Brain Res 1240:62–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ippolito DM, Eroglu C (2010) Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp pii:2270

    Google Scholar 

  23. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300:C723–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meyer F (1992) Color image segmentation, in Proceedings of the IEE International Conference on Image Processing and Its Applications, Maastricht, the Netherlands, IEE, London, UK, pp. 303–306

    Google Scholar 

  25. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598

    Article  Google Scholar 

  26. Busse B, Smith S (2013) Automated analysis of a diverse synapse population. PLoS Comput Biol 9:e1002976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. John Wiley & Sons, Inc is the publisher which has multiple locations worldwide so cannot specify a single location with certainty but if one must absolutely be used use New York

    Google Scholar 

Download references

Acknowledgments

The dot-finding routine was developed by Josh Morgan and further refined by the collaborative efforts of past and present Rachel Wong Lab members. Credit for the dot-finding routine goes to the concerted efforts of Josh Morgan, Daniel Kerschensteiner, Adam Bleckert, and Haruhisa Okawa. Daniel Kerschensteiner, Florentina Soto, Josh Morgan, and Adam Bleckert together developed the correlation analysis. We are grateful to Rachel Wong and Adam Bleckert for critical feedback and suggestions during preparation of this chapter. This work is supported by NIH grants (EY10699, EY17101, and EY14358 to R. Wong and a Vision Core grant EY01730); a Human Frontier Science Program grant (RGP0035 to L. Lagnado, F. Schmitz, and R. Wong); a Human Frontier Science Program Long term fellowship (R. Sinha); and a Knights Templar Eye Foundation career starter grant (M. Hoon). The immunolabeling for Ribeye and GABAA receptors shown in the Figures has been possible due to antibodies generously provided by Frank Schmitz and Jean-Marc Fritschy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mrinalini Hoon or Haruhisa Okawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hoon, M., Sinha, R., Okawa, H. (2017). Using Fluorescent Markers to Estimate Synaptic Connectivity In Situ. In: Poulopoulos, A. (eds) Synapse Development. Methods in Molecular Biology, vol 1538. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6688-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6688-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6686-8

  • Online ISBN: 978-1-4939-6688-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics